Volume 33, Issue 2 (5-2025)                   JSSU 2025, 33(2): 8667-8697 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasiri M, Ali Asgari Z, Pezeshki Modarres M, Jafari Nodoushan M, Zamanlui Benisi S, Mohammadi Shabestari S. Advances and Challenges of Electrospun Nanofibrous Polymer Biomimetic Scaffolds in Cartilage Tissue Engineering. JSSU 2025; 33 (2) :8667-8697
URL: http://jssu.ssu.ac.ir/article-1-6258-en.html
Abstract:   (20 Views)
Introduction: The field of tissue engineering utilizes interdisciplinary sciences such as to repair or regenerate damaged tissues through the integration of cellular biology, biomaterials, pharmaceuticals, and signaling molecules to repair and reconstruct damaged tissues. Scaffolds, by mimicking the natural extracellular matrix (ECM), play a vital role in guiding cellular activities. Cartilage, as a tissue without blood vessels and nerves, lacks the ability for self-repair, and its injuries are always considered a clinical challenge that affects the lives of millions of people and incurs significant treatment costs. In recent years, the electrospinning technique has gained attention for the production of nanofibers. Electrospun scaffolds, mimicking the extracellular matrix of cartilage, provide a suitable environment for the attachment, proliferation, and differentiation of chondrocytes. The use of nanofibrous scaffolds, along with cells and signaling molecules compatible with the target tissue, is of particular importance for cartilage tissue regeneration. Various natural and synthetic polymers have been used for cartilage tissue regeneration via electrospinning, and their effects on nanofiber morphology have been extensively studied.
Conclusion: This review emphasized recent advancements in the preparation of electrospun scaffolds for cartilage tissue engineering and discussed methods to improve their performance. It also provides an overview of natural, synthetic, and composite biomaterials utilized for electrospinning cartilage scaffolds. The function of nanofibers in delivering signaling molecules for cartilage regeneration is explored. Current challenges in this field are addressed, along with strategies to overcome them, offering potential improvements in cartilage repair techniques and their future clinical application.
 
Full-Text [PDF 1593 kb]   (17 Downloads)    
Type of Study: Review article | Subject: other
Received: 2024/08/4 | Accepted: 2025/01/21 | Published: 2025/05/5

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | SSU_Journals

Designed & Developed by : Yektaweb