Volume 24, Issue 7 (Oct 2016)                   JSSU 2016, 24(7): 555-564 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dadgarnia H, Hajebrahimi Z. Decrease of Tie1 and VCAM-1 Genes Expression in Microgravity Condition: New Strategy for Study and Treatment of Atherosclerosis Disease. JSSU 2016; 24 (7) :555-564
URL: http://jssu.ssu.ac.ir/article-1-3587-en.html
Abstract:   (5037 Views)

Introduction: VCAM-1 and Tie1 are endothelial molecule and receptor, respectively that may participate in atherosclerosis disease. Endothelial cells are very sensitive to mechanical forces, including microgravity and the morphological and functional changes in this condition. To examine the effect of gravity on atherosclerosis disease, we analyzed the expression of VCAM-1 and Tie1 genes in microgravity condition in HUVEC cells.

Methods: The research method was experimental. HUVEC cells purchased from Pastor Institute. We used a clinostat to simulate microgravity condition for 2, 24 and 72 hours. Real time PCR technique was used for gene expression analysis after extraction of RNA from cells.

Results: Our results showed that microgravity led to a significant decrease in gene expression of
VCAM-1 and Tie1 (p<0.05).This response remained similar after 72 hours of exposure to microgravity.

Conclusion: It seems that weightlessness has a positive impact on reducing the factors causing atherosclerosis and can be used as a new strategy in the treatment of the atherosclerosis disease. Microgravity also can be used to study development and progression of vascular disease.

Full-Text [PDF 592 kb]   (1292 Downloads)    
Type of Study: Original article | Subject: Genetics
Received: 2016/01/25 | Accepted: 2016/09/10 | Published: 2016/10/5

References
1. Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol 2015; 209(1): 13-22.
2. Spinelli FR, Pecani A, Conti F, Mancini R, Alessandri C, Valesini G. Post-translational modifications in rheumatoid arthritis and atherosclerosis: Focus on citrullination and carbamylation. J Int Med Res 2016; 44(1 suppl): 81-4.
3. Lawson JS. Multiple Infectious Agents and the Origins of Atherosclerotic Coronary Artery Disease. Front Cardiovasc Med 2016; 3:30.
4. Gerrity RG. The role of the monocyte in atherogenesis I: transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 1981; 103(2): 181-90.
5. Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate. I: changes that lead to fatty streak formation. Arteriosclerosis 1984; 4(4): 323-40.
6. Davies MJ, Woolf N, Rowles PM, Pepper J. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Br Heart J 1988; 60(6): 459-64.
7. Springer TA, Cybulsky MI. Traffic signals on endothelium for leukocytes in health, inflammation, and atherosclerosis. In: Fuster V, Ross R, Topol EJ, eds. Atherosclerosis and Coronary Artery Disease. Volume 1. Philadelphia, Pa: Lippincott-Raven Publishers; 1996: 511-37.
8. Alon R, Kassner PD, Carr MW, Finger EB, Hemler ME, Springer TA. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 1995; 128(6): 1243-53.
9. Berlin C, Bargatze RF, Campbell JJ, Von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC. Integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 1995; 80(3): 413-22.
10. Gerszten RE, Luscinskas FW, Ding HT, Dichek DA, Stoolman LM, Gimbrone MA Jr, Rosenzweig A. Adhesion of memory lymphocytes to vascular cell adhesion molecule-1-transduced human vascular endothelial cells under simulated physiological flow conditions in vitro. Circ Res 1996; 79(6): 1205-15.
11. Konstantopoulos K, Kukreti S, Smith CW, McIntire LV. Endothelial P-selectin and VCAM-1 each can function as primary adhesive mechanisms for T cells under conditions of flow. J Leukoc Biol 1997; 61(2): 179-87.
13. Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993; 178(2): 449-60.
14. Bogen S, Pak J, Garifallou M, Deng X, Muller WA. Monoclonal antibody to murine PECAM-1 (CD31) blocks acute inflammation in vivo. J Exp Med 1994; 179(3): 1059-64.
15. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76(2): 301-14.
16. Iiyama K, Hajra L, Iiyama M, Li H, Di-Chiara M, Medoff BD, Cybulsky MI. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999; 85(2): 199-207.
17. Porat RM, Grunewald M, Globerman A, Itin A, Barshtein G, Alhonen L, Alitalo K, Keshet E. Specific induction of tie1 promoter by disturbed flow in atherosclerosis-prone vascular niches and flow-obstructing pathologies. Circ Res 2004; 94(3): 394-401.
18. Chan B, Yuan HT, Ananth Karumanch S, Sukhatme VP. Receptor tyrosine kinase Tie-1 overexpression in endothelial cells upregulates adhesion molecules. Biochem Biophys Res Commun 2008; 371(3): 475-9.
19. Garcia-Cardena G, Comander j, Anderson KR, Blackman BR, Gimbrone MA. Biomechanical activation
20. of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 2001; 98(8): 4478-85.
22. 19- McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2001; 98(16): 8955-60.
23. 20- Cogoli A. Theories and models of biological response to gravity: an introduction. Adv Space Res 1992; 1(1): 5-6.
25. 21- Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91: 3527–3561.
26. 22- Liu Q, Zhou RL, Zhao X, Chen XP, Chen SG. Acclimation during space flight: effects on human emotion. Mil Med Res 2016; 3(1): 15.
27. 23- Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 2016; 137: 3-18.
28. 24- Crawford-Young SJ. Effects of microgravity on cell cytoskeleton and embryogenesis. Int J Dev Biol 2006; 50(2-3): 183-91.
29. 25- Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblasts growth activation. Exp Cell Res 1996; 224(1): 103-9.
30. 26- Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nature medicine. 1998 Aug 1; 4(8): 901-7.
31. 27- Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91(10): 3527-61.
32. 28- Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R. Upregulation of VCAM-1 and ICAM-1 at Atherosclerosis-Prone Sites on the Endothelium in the ApoE-Deficient Mouse. Arterioscler Thromb Vasc Biol 1998;18(5): 842-51.
33. 29- Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107(10): 1255-62.
34. 30- Ramos CL, Huo Y, Jung U, Ghosh S, Manka DR, Sarembock IJ, Ley K. Direct demonstration of P-selectin- and VCAM- 1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ Res 1999; 84(11): 1237-44.
35. 31- Huo, Y, Hafezi-Moghadam, A, Ley K. Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res 2000; 87(2):153-59.
36. 32- Chan B, Sukhatme VP. Suppression of Tie-1 in endothelial cells in vitro induces a change in the genome-wide expression profile reflecting an inflammatory Function. FEBS Lett 2009; 583(6): 1023-8.
37. 33- Dinarello CA. Interleukin-1. Cytokine Growth Factor Rev 1997; 8: 253-65.
38. 34- Von der Thusen JH, Kuiper J, van Berkel TJ, Biessen EA. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55(1): 133-66.
39. 35- Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23(4): 656-60.
40. 36- Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 1998; 97(3): 242–4.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | SSU_Journals

Designed & Developed by : Yektaweb