Volume 18, Issue 1 (March-April 2010)                   JSSU 2010, 18(1): 39-46 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barzegary F, Javed A, Rezaei Zarchi S. Antimicrobial Activities of TiO2 Nanoparticle Against Escherichia coli and Staphylococcus aureus. JSSU. 2010; 18 (1) :39-46
URL: http://jssu.ssu.ac.ir/article-1-1008-en.html
Abstract:   (11413 Views)
Introduction: Organic antibacterial materials have been used as insecticides and bactericides for many years. Unfortunately, high temperatures in manufacturing process reduce their antibacterial properties. However, inorganic materials of antibacterial agents have excellent bacterial resistance and thermal stability. Over the past few decades, inorganic nanoparticles whose structures exhibit significantly novel and improved physical, chemical and biological properties and functionality due to their nano-scale size have elicited much interest. methods:The aim of this study was to investigate the antibacterial properties of one kind of nano-specimen (TiO2 nanoparticle) against Escherichia coli and Streptococcus aureus. Our study was research perusal. In the first study, the optical density of E. coli and S. aureus cultures were observed in the presence of 0.01%, 0.75% and 1.5% of TiO2. In the second study, 6.3 log CFU/ml of E. coli and S. areus were separately exposed to 1.5% TiO2 at 37 ºC in water. In third study, we studied thew growth of E.coli in solid medium with and without nanoparticles. Results: The presence of 0.01% TiO2 nanoparticles didn’t have a statistically significant effect, but in the presence of 0.75% and 1.5% nanoparticles, the bacterial colonies decreased significantly. In the control group, bacterial cells survival was nearly 13 days, while complete cell death of E. coli was seen when 1.5% TiO2 was applied for 24 hours. The same experiment for S. aureu, showed that complete cell death occured when the bacterial culture was exposed to 1.5% TiO2 for 16 hours.. It was shown that presence of 1.5% TiO2 in the solid medium suppressed the growth of E. coli 5.6 times more (p < 0.001). Discussion: Our findings showed antibacterial effects of TiO2 nanoparticles against both bacteria, but S. areus bacteria were more sensitive to nanoparticles as compared to E. coli bacteria
Full-Text [PDF 395 kb]   (2349 Downloads)    
Type of Study: Original article | Subject: General
Received: 2010/03/15 | Published: 2010/04/15

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 CC BY-NC 4.0 | SSU_Journals

Designed & Developed by : Yektaweb