1. Rajaee fard A, Tabatabaee H, Moghimi B, Zeighami B, Safaeii A, Tabeii Z. Checking Cases of esophageal cancer in Fars Province (2001-2006). J Kermanshah Medical Sciences university 2009; 13(1): 65-73. [persian]
2. Holt CL, Kyles A, Wiehagen T, Casey C. Development of a spiritually based breast Cancer educational booklet for African-American women. Cancer Control 2003; 10(5): 37-44.
3. Howell A , Sims AH, Ong KR, Harvie MN, Evans DG, Clarke RB, A et al. Mechanisms of Disease prediction and prevention of breast cancer cellular and molecular interactions. Nat Clin Pranct Oncol 2005; 2(12): 635-46.
4. Varangot M , Barrios E, Sóñora C, Aizen B, Pressa C, et al. Clinical evaluation of a panel FNA markers in the detection of disseminated tumor cells in patients with operable breast cancer. Oncol Rep 2005; 14(2): 537-45.
6. 5- Brunicardi FCh. Schwartz's principles of surgery. 8th ed. New York: McGraw-Hill 2005; 654-9.
7. Lehto US, Ojanen M, DybaiT, Aromaa A, kellokumpu-Lehtinen P. Baseline psychosocial predictors of survival in localised breast cancer. British J Cancer 2006; 94(9): 1245-52.
8. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 2013; 494(7437): 366-70.
9. Tan L, Shi YG. TET-1 family proteins and 5- hydroxymethylcytosine in development and disease. Development 2012; 139(11): 1895-902.
10. Chahwan R, Wontakal SN, Roa S. Crosstalk between genetic and epigenetic information through cytosine deamination. Trends in genetics 2010; 26(10): 443-8.
11. Lackey L, Demorest ZL, Land AM, Hultquist JF, Brown WL, Harris RS. APOBEC3B and AID have similar nuclear import mechanisms. J molecular biology 2012; 419(5): 301-14.
12. Ooms M, Krikoni A, Kress AK, Simon V, Münk C. APOBEC3A, APOBEC3B, and APOBEC3H haplotype 2 restrict human T- lymphotropic virus type 1. J virology 2012; 86(11): 6097-6108.
13. Almeida L, Custodio A, Pinto G, Santos M, Almeida J, Clara C, et al. Polymorphisms and DNA methylation of gene TP53 associated with extra-axial brain tumors. Genet Mol Res 2009; 8(1): 8-18.
14. Guo JU, Su Y, Zhong C, Ming G, Song H. Hydroxylation of 5-methylcytosine by TET-11 promotes active DNA demethylation in the adult brain. Cell 2011; 145(3): 423-34.
15. Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 2010; 463(7284): 1101-5.
16. Yang H, Liu Y, Bai F, Zhang J, Ma S, Liu J, et al. Tumor development is associated with decrease of TET-1gene expression and 5-methylcytosine hydroxylation. Oncogene 2013; 32(5): 663-9.
17. Yang AS, Estécio MR, Doshi K, Kondo Y, Tajara EH, Issa JPJ. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic acids research 2004; 32(3): 20-38.
18. Gordanian B, Behbahani M, Carapetian J, Fazilati M. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species. Research in Pharmaceutical Sci 2014; 9(2): 91-96.
19. Hoffman E. Cancer and the search for selective biochemical inhibitors. 2th ed. Boca Raton. CRC Press; 2007
21. Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15: 7313-52.
22. Frankel EN, Waterhous AL, Kinsella JE. Inhbition of human LDL oxidation by resveratrol. Lancet 1993; 341(8852): 1103-4.
24. Wadi Poor M. Proceedings of the nurses in Isfahan 2009; 7(12): 76-8. [persion]
25. Xu Q, Si LY. Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action. Nutr Res 2012; 32(9): 648-58.
26. Dong H, Ren H. New progression in the study of protecties of resveratrol in anticardiovascular disease. Bratisl Lek Listy 2004; 105(5-6): 225-29.
27. Lackey L, Demorest ZL, Land AM, Hultquist JF, Brown WL, Harris RS. APOBEC3B and AID have similar nuclear import mechanisms. J molecular biology 2012; 419(5): 301-14.
28. Abolhassani A, Riazi GH, Azizi E, Amanpour S, Muhammadnejad S, Haddadi M, et al. FGF10: Type III Epithelial Mesenchymal Transition and Invasion in Breast Cancer Cell Lines. J Cancer 2014; 5(7): 537.
29. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 new capabilities and interfaces. Nucleic acids 2012; 40(15): e115.
30. Jaenisch R and Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33: 245-54.
31. Ward C, Langdon SP, Mullen P, Harris AL, Harrison DJ, Supuran CT, et al. New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer treatment reviews 2013; 39(2): 171-9.
32. Malekyian Fini E, Shavandi N, Saremi A. Effect of short-term Resvin supplementation on total antioxidant capacity ‚super oxide dismutase, and creatine kinase in elite women volleyball players. Iranian J Nutrition Sciences & Food Technology 2013; 8(3): 79-86.
33. Casanova F, Quarti J, da Costa DCF, Ramos CA, da Silva JL, Fialho E. Resveratro chemosensitize breast cancer cells to melphalan by cell cycle arrest. J cellular biochemistry 2012; 113(8): 2586-96.
34. Qin W, Zhu W, Sauter E. Resveratrol induced DNA methylation in ER+ breast cancer. AACR 2005; 46(9): 2750
35. Sieuwerts Am, Burns M, Look M, Meijer-Van Gelder M, Schlicker A, Heidemann M, et al. Abstract S6-05: High levels of APOBEC3B, a DNA deaminase and an enzymatic source of C-to-T transitions, are a validated marker of poor outcome in estrogen receptor-positive breast cancer. Cancer Res 2013;73(24 ); 60- 8.
36. Rhee I, Jair K-W, Yen R-WC, Lengauer C, Herman JG, Kinzler KW, et al. CpG methylation is maintained in human cancer cells lacking DNMT_1. Nature 2000; 404(6781): 1003-7.
37. Lee WJ, Shim J-Y, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Molecular pharmacology 2005; 68(4): 1018-30.
38. Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochemical pharmacology 2010; 80(12): 1771-92.
39. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5- formylcytosine and 5-carboxylcytosine. Science 2011; 333(6047): 1300-3.
40. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5- methy cytosin to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929): 930-5.
41. Yang H, Liu Y, Bai F, Zhang J, Ma S, Liu J, et al. Tumor development is associated with decrease of TET-1 gene expressionand 5-methylcytosine hydroxylation. Oncogene 2013; 32(5): 663-9.
42.