Volume 28, Issue 6 (8-2020)                   JSSU 2020, 28(6): 2766-2780 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yakhchi V, Jahanizadeh S, Yazdian F, Rashedi H, Haghiralsadat B F. Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species. JSSU. 2020; 28 (6) :2766-2780
URL: http://jssu.ssu.ac.ir/article-1-5045-en.html
Abstract:   (533 Views)
Introduction: Loading the active ingredients of medicinal plants in lipid nanoparticles reduces the reaction of the active substance with the surrounding environment, such as water and oxygen, and reduces the intensity of transmission or evaporation to the external environment. In this study, intended to enhance efficacy of ginger extract, encapsulation in nanoliponiosome synthesized by thin-film hydration method were done and their antifungal effect on the growth of Aspergillus flavus and Aspergillus parasiticus were studied.
Methods: In this experimental laboratory study, derivation was done using Soxhlet extractor method. Antifungal activity of ginger extract was specific by disc diffusion and microplate dilution methods. The inhibitory effect of extract was investigated. Physiochemical characteristics and structural characterization of nanoparticle were evaluated from the perspective of in vitro efficiency, drug release, nanoparticle size, zeta potential, surface morphology and FTIR (Fourier-transform infrared spectroscopy), DLS (Dynamic light scattering) and finally SEM (Scanning electron microscope) spectra.
Results: FTIR investigations showed ginger extract and nanoliponiosome had no chemical interaction leading to change the functional groups. SEM microscope showed the spherical mprphology of particles and average particles size of 73nm. Ginger extract was loaded into the nanoliponiosome with a yield of 71%. It was also found out that ginger extract had a stronger antifungal effect against Aspergillus flavus fungus compared to the Aspergillus parasiticus fungus. At both 37°C and 42°C, the release of ginger extract was higher at pH of 4.5 compared to neutral pH (7.4).
Conclusion: Nanoliponiosomes containing ginger extract with good physicochemical properties, increased drug stability and good release control can be promising antifungal agents with high antifungal effects and low side effects.
Full-Text [PDF 1076 kb]   (246 Downloads)    
Type of Study: Original article | Subject: other
Received: 2019/12/30 | Accepted: 2020/08/31 | Published: 2020/08/31

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 All Rights Reserved | SSU_Journals

Designed & Developed by : Yektaweb