تیماری های جنینی انسان به سلولهای مولد انسولین

چکیده

مقدمه: دایت نوع 1، بیماری خود ایمنی می باشد که در نتیجه تخریب سلولهای بتای مولد انسولین ایجاد می شود. از جمله روش های بالقوه درمانی جدید یا درمان این بیماری استفاده از بیان ویتامین جنینی انسانی و تmaal می آیزی به سمت سلولهای مولد انسولین است. روش بررسی: در این مطالعه از بین بیاناتی های جنینی انسانی (رویان H1) استفاده شد. با استفاده از روش تابع مستقیم بازی‌ها (RT-PCR) سلولهای مادری مارکور تک نکیده و بعد با افزودن نکروتیک آمید القا، تا مایز به سوسیالهای مولد انسولین انجم شد. سلولهای حامل مورد ارزیابی اپسیونیوتروفی و میکروسکوپی الکترونی (EM) در مرحله انقیحه تمایز اینفیتی نیکی به منظور ارزیابی پیوند زیر پوست تریک و گردید. نتایج: اپسیونیوتروفی سلولهای تمایز یافته و جدول سلولهای بیان کننده انسولین، گلوکاگون، سوماتوپین و پیشین بانکارسی RT-PCR سلولهای جنینی خصوصی گلوکارسی و را در مرحله نیکی تمایز مشخص نمود. با افزودن گلوکارسی به محیط کشت، انسولین از سلولهای تمایز یافته به سر درآمد. البته با افزایش شفافیت گلوکارسی، میدان رهاش انسولین بیشتر نشود. سلولهای در ناحیه تریک و گلوکارسی خونی تمایز یافته دادند در مقطع بافت انسولین مثبت مشاهده شد فرآینده سلولهای تمایز یافته از دستگاه گلگز در شبکه آندولیاژی دانه در و گرفته از این دادن بالا راه گزارش منتقل گرفته شد و سلولهای بتای بنا نهاد. نتیجه گیری: نتایج این مطالعه نشان داد که امکان تمایز بین پایه انسولین انسانی به سلولهای مولد انسولین وجود دارد وی به مطالعات پیوسته برای تولید سلولی بیا حیاتی نیاز است.

واژههای کلیدی: به ویتامین جنینی انسانی، سلولهای مولد انسولین، تمایز، دایت

مقدمه

دایت نوع 1 (غیر ویتامین انسولین) بیماری خود ایمنی است که در نتیجه تخریب سلولهای بتای مولد انسولین توسط سیستم ایمنی به وجود می آید. روش رایج برای درمان دایت، تزریق مربی انسولین می باشد اما اهمیت اولین مقدار انسولین موجود E-mail: Baharvand50@yahoo.com

1. استادیار گروه سلولهای بتای، پژوهشکده روابط - تهران
2. پژوهشکده پژوهشکده روابط - تهران
3. تاریخ دریافت: 1398/12/18
4. تاریخ پذیرش: 1398/12/18
5. مدل دانشگاه علوم پزشکی و خدمات بهداشتی درمانی نیما یازداوند، بهمن موسوی سیده، ملاعمحمدی،
تنویعین باخته‌های جنینی انسان به سلول‌های مولد انژلین

(Inner Cell Mass) ICM

جنینی که در مرحله بی‌استوستیت (Inner Cell Mass) ICM می‌باشد مثبت می‌شود. این سلول‌های بی‌اختیار تمایز خوده با خودی دارند. سلول‌های بنیادی جنینی انسانی جنین‌ترین دیده‌بینی در درمان بیمارانی مانند دیابت نوع 1 و وجود آورده‌ای از دانش‌نامه‌های سلول‌های بنیادی جنینی انسانی مشخص برای مرحله‌ای گیر دایر در دانسته‌ها درصد کمی از این سلول‌های مولد انژلین تمایز پیدا کرده. در روش چند مرحله‌ای دیگری که با استفاده از یک آزمایشگاه سلول‌های انبساط اکتش در سلول‌های بنیادی تمایز یافته از سلول‌های بنیادی موش به طور قابل توجهی افزایش یافته کرده. این روش یک روش تمایز مستقیم است که در سلول‌های منفی که ابتدا نسبتی به یک می‌کند تکثیر یک راه تجویز خورده این سلول‌های مرحله‌ای که روی آن است (Inner Cell Mass) ICM بروز می‌شود و سلول‌های بنیادی سلول‌های استفاده شده هنوز مقدار این سلول‌های کمی نسبت به سلول‌های با سلول‌های باید مورد نظر در این حال این سلول‌های قابلیت بروز می‌شود و در دلیل تسلیسل توانایی بازگشت است که در آن سلول‌های بنیادی Royan H1 تمایز پیدا می‌کند، ابتدا پیش مباینی نسبتی مثبت تکثیر شده و در نهایت این سلول‌های سلول‌های انژلین تمایز نهایت می‌کند. بعد از آزمون های گیپس‌پذیری تابع شد که سلول‌های حاصل می‌کند. ترکیب انسولین و نیترو منشین‌های ویژه سلول‌های انژلین تا سطح خود خیس یک می‌کند. امید است که پیوند در آن‌ها با استفاده از سلول‌های بنیادی گام های مهمی در راه‌نشانی مسر تکنیک‌های فناوری‌های مختلف بر خلاف مرگ و میر در نهایت درمان دیابت برداشت.

روش بررسی

کشت سلول‌های بنیادی جنینی انسانی در این مطالعه از سلول‌های بنیادی جنینی انسانی رویان (Royan) H1 استفاده گردید. سلول‌های فوق روش ویرودی است های جنینی موش.

برای این‌که با آزمایش‌های آزمایشگاه سلول‌های بنیادی جنینی انسانی در این مطالعه استفاده گردید، سلول‌های فوق روش ویرودی است های جنینی موش در ویاکرکس و تهیه کردن گیره‌های جنینی موش گردید.

پی بردن (۵) با پاتکرس دارای در یک آزمایشگاهی و اندازه‌گیری است. در یک آزمایشگاهی با پاتکرس به جریان دارد که این سلول‌های قابلیت تمایز به سلول‌های بنیادی پاتکرس را دارد. این سلول‌های بعد از جراحات قبل از محل خود خود از پاتکرس انسانی چرا از پاتکرس به سلول‌های پاتکرس می‌توان به صورت طولانی مدت داروهای مربوط به سلول‌های بنیادی این جنگ افزایش یافته کرده. از مطالعاتی است که سلول‌های بنیادی سلول‌های غیر بنیادی سلول‌های سلول‌های سلول‌های منفی که روی آن است (Inner Cell Mass) ICM بروز می‌شود و سلول‌های بنیادی سلول‌های استفاده شده هنوز مقدار این سلول‌های کمی نسبت به سلول‌های با سلول‌های باید مورد نظر در این حال این سلول‌های قابلیت بروز می‌شود و در دلیل تسلیسل تابع شد که سلول‌های حاصل می‌کند.

روش انجام شده در این مطالعه یک روش تمایز مستقیم است که در آن سلول‌های بنیادی Royan H1 تمایز پیدا می‌کند، ابتدا پیش مباینی نسبتی مثبت تکثیر شده و در نهایت این سلول‌های سلول‌های انژلین تمایز نهایت می‌کند.

بعد از آزمون های گیپس‌پذیری تابع شد که سلول‌های حاصل می‌کند. ترکیب انسولین و نیترو منشین‌های ویژه سلول‌های انژلین تا سطح خود خیس یک می‌کند. امید است که پیوند در آن‌ها با استفاده از سلول‌های بنیادی گام های مهمی در راه‌نشانی مسر تکنیک‌های فناوری‌های مختلف بر خلاف مرگ و میر در نهایت درمان دیابت برداشت.

بی‌خته‌ها و صورت‌های تغییر تمایز به سلول‌های بنیادی دیگر سلول‌های بنیادی جنینی موش در این مطالعه از سلول‌های بنیادی جنینی انسانی رویان (Royan) H1 استفاده گردید. سلول‌های فوق روش ویرودی است های جنینی موش در ویاکرکس و تهیه کردن گیره‌های جنینی موش گردید.

پی بردن (۵) با پاتکرس دارای در یک آزمایشگاهی و اندازه‌گیری است. در یک آزمایشگاهی با پاتکرس به جریان دارد که این سلول‌های قابلیت تمایز به سلول‌های بنیادی پاتکرس را دارد. این سلول‌های بعد از جراحات قبل از محل خود خود از پاتکرس انسانی چرا از پاتکرس به سلول‌های پاتکرس می‌توان به صورت طولانی مدت داروهای مربوط به سلول‌های بنیادی این جنگ افزایش یافته کرده. از مطالعاتی است که سلول‌های بنیادی سلول‌های غیر بنیادی سلول‌های سلول‌های منفی که روی آن است (Inner Cell Mass) ICM بروز می‌شود و سلول‌های بنیادی سلول‌های استفاده شده هنوز مقدار این سلول‌های کمی نسبت به سلول‌های با سلول‌های باید مورد نظر در این حال این سلول‌های قابلیت بروز می‌شود و در دلیل تسلیسل تابع شد که سلول‌های حاصل می‌کند.

روش انجام شده در این مطالعه یک روش تمایز مستقیم است که در آن سلول‌های بنیادی Royan H1 تمایز پیدا می‌کند، ابتدا پیش مباینی نسبتی مثبت تکثیر شده و در نهایت این سلول‌های سلول‌های انژلین تمایز نهایت می‌کند.

بعد از آزمون های گیپس‌پذیری تابع شد که سلول‌های حاصل می‌کند. ترکیب انسولین و نیترو منشین‌های ویژه سلول‌های انژلین تا سطح خود خیس یک می‌کند. امید است که پیوند در آن‌ها با استفاده از سلول‌های بنیادی گام های مهمی در راه‌نشانی مسر تکنیک‌های فناوری‌های مختلف بر خلاف مرگ و میر در نهایت درمان دیابت برداشت.

روش بررسی

کشت سلول‌های بنیادی جنینی انسانی در این مطالعه از سلول‌های بنیادی جنینی انسانی رویان (Royan) H1 استفاده گردید. سلول‌های فوق روش ویرودی است های جنینی موش
که توسط میتوئاپسین (Sigma) به صورت غیرفعال در آوردند و در محیط کشت ازودی های زیر بود کشت شدند:

- Al - GFS
- سرولن (Gibco)
- مولیکول
- نم (Sigma)
- یون مولیکول

(1) اسپیدوم جایگزینی به صورت ۰/۰۵/۰ به سیستم سلول‌ها می‌رسد و در میان محیط کشت سلول‌های ابتدا جنین است. با اضافه کردن ۲۰۰ مولیکول اسپیدوم به یک قطعه می‌گردد.

- ۵/۰/۰۰۵ مولیکول (Sigma) N2
- ۰/۰۰۰ مولیکول (Sigma) B27
- ۵۰ مولیکول (Sigma)

در روز ۴/۰/۰۰۰ مولیکول کشت ازودی های زیر بود کشت شدند. در این محیط کشت همان ۰/۰۰۵/۰ مولیکول (Sigma) B27

(1) که توسط میتوئاپسین (Sigma) به صورت غیرفعال در آوردند و در محیط کشت ازودی های زیر بود کشت شدند:

- Al - GFS
- سرولن (Gibco)
- مولیکول
- نم (Sigma)
- یون مولیکول

(1) اسپیدوم جایگزینی به صورت ۰/۰۵/۰ به سیستم سلول‌ها می‌رسد و در میان محیط کشت سلول‌های ابتدا جنین است. با اضافه کردن ۲۰۰ مولیکول اسپیدوم به یک قطع

- ۵/۰/۰۰۰ مولیکول (Sigma) N2
- ۰/۰۰۰ مولیکول (Sigma) B27
- ۵۰ مولیکول (Sigma)

در روز ۴/۰/۰۰۰ مولیکول کشت ازودی های زیر بود کشت شدند. در این محیط کشت همان ۰/۰۰۵/۰ مولیکول (Sigma) B27

(1) که توسط میتوئاپسین (Sigma) به صورت غیرفعال در آوردند و در محیط کشت ازودی های زیر بود کشت شدند:

- Al - GFS
- سرولن (Gibco)
- مولیکول
- نم (Sigma)
- یون مولیکول

(1) اسپیدوم جایگزینی به صورت ۰/۰۵/۰ به سیستم سلول‌ها می‌رسد و در میان محیط کشت سلول‌های ابتدا جنین است. با اضافه کردن ۲۰۰ مولیکول اسپیدوم به یک قطع

- ۵/۰/۰۰۰ مولیکول (Sigma) N2
- ۰/۰۰۰ مولیکول (Sigma) B27
- ۵۰ مولیکول (Sigma)

در روز ۴/۰/۰۰۰ مولیکول کشت ازودی های زیر بود کشت شدند. در این محیط کشت همان ۰/۰۰۵/۰ مولیکول (Sigma) B27

(1) که توسط میتوئاپسین (Sigma) به صورت غیرفعال در آوردند و در محیط کشت ازودی های زیر بود کشت شدند:

- Al - GFS
- سرولن (Gibco)
- مولیکول
- نم (Sigma)
- یون مولیکول

(1) اسپیدوم جایگزینی به صورت ۰/۰۵/۰ به سیستم سلول‌ها می‌رسد و در میان محیط کشت سلول‌های ابتدا جنین است. با اضافه کردن ۲۰۰ مولیکول اسپیدوم به یک قطع
ارزیابی ترشح انسلوئین: سلول‌ها روز 23+4 مورد ارزیابی ترشح انسلوئین قرار گرفتند. این مورد سلول‌ها برای یافتن کریس-رینگر که شامل BSA, (25mM) NaHCO3 Buffer, 10mM (Mgcl2), (2.5mM) Cacl2, (5mM) Kcl, (120mM) Nacl بود.

BSA، (5mM) NaHCO3 Buffer، 10mM (Mgcl2)، (2.5mM) Cacl2، (5mM) Kcl، (120mM) Nacl همراه با 0.1% BSA و 0.1% TNP بود. سلول‌ها در دقیقه اکثریت گرفتند. سلول‌ها در مجموع میزان گرفتگی (0%) به سلل‌های برای کریس - رینگر بوده و همراه با BSA اضافه شد. سلول‌ها در دقیقه اکثریت گرفتند و مجموع میزان BSA جمع آوری شد. در محلول بعدی سلول‌ها به مدت 5 دقیقه با بافر کریس - رینگر و گلرک (5mM) BSA و گلرک (5mM) با فرم آکتوسین BSA گرفتند و 5 دقیقه بعد مجموع میزان سلول‌های اکثریت گرفتگی برابر بود.

ارزیابی توسط کیت انجمن SourceINS-IRMA Kit Bio RNA-PCR (سامان)، کل موجودی RNA سلولی از جنسیت جنین انسان رونای H1 و سلول‌های ایمنیته با سلول‌های مولود انسولوم استخراج گردید. قبل از استخراج دنای RNA، انتخاب تنها تیمار با DNA قرار گرفتند آنلودگی‌های احتمالی مربوط به RNA زنده‌یک هزینه RNA و حذف گردید. سپس غلظت استخراج شده با استخراج دنای RNA و کیت Random Hexamer (K 1622 Fermentas) Reverse AdT MmF Minus First Strand cDNA Synthesis تهیه شد.

ارزیابی سلل‌های ترشح انسلوئین با استفاده از تکنیک:

یک هفته بعد از تهیه انسلوئین به تکنیک آمپ (15mM) و 19 روز پس از بیوند این سلول‌ها به زیر پوست سلول‌های مورد ارزیابی با تکنیک اکثریت گرفتند. تیتین اولیه با گلرک‌های 2/3 در اثر استخراج شده برداشت و با استفاده از PCR و کیت (K 1622 Fermentas) Reverse AdT MmF Minus First Strand cDNA Synthesis تهیه شد.

نتایج

پژوهش بر محور میکросیکل تولید cDNA شده برای آن تکنیک PCR و کیت (K 1622 Fermentas) Reverse AdT MmF Minus First Strand cDNA Synthesis تهیه شد.

درمانی تهیه صورت گرفت برای این منظور مواد زیر در یک لوله به یکدیگر مخلوط شدند:

MgC12 (50 mM)، 25 µl (10X) PCR Buffer (AMS)، 7 µl cDNA (50 ng/µl) 50-100 µM) 100 µl dNTPmix (10X) mM) (MgC12) 50 µl (10X) PCR Buffer (AMS)
نام	سلسله	اندازه	زرده
Sur1 | 5′CACATCCACCAAGACCTATGG3′
5′GTCTTGAGAAGGTGATCTCCCTCA3′ | 420 bp | 62º
Insulin(a) | 5′AGCCTTTCGAGCAACACC3′
5′GCTGTTAGGGAGGACAGATG3′ | 245 bp | 62º
Glut1 | 5′CCACGAGCATCTTCTGGA3′
5′GCACATGGCCAATAGA3′ | 374 bp | 55º
Glut2 | 5′GGTTTGTAACTTATGCTGA3′
5′GCCTAGTTATGAGGGC3′ | 213 bp | 60º
Somatostatin | 5′CTCGTCAGTTTCGAGAAG3′
5′GGATGTTGAAGGTCTCCAGAAG3′ | 312 bp | 60º
Pax4 | 5′GGTTTGGCATATCTGATCTG3′
5′GTGCACGACAGACCTTCTGG3′ | 312 bp | 60º
Isl1 | 5′GATTCTCTGTCTGTGGTTGC3′
5′CTTCCACTGGTATACGTC3′ | 827 bp | 60º
Nkx6.1 | 5′GTCTCTCCTCCTCTCCTC3′
5′AGAATCTCTGTGTCCGAAAG3′ | 381 bp | 60º
PC1/3 | 5′TGCTGCGAAAGACGGCTAC3′
5′ACTCTCTTGTGATGTGATGC3′ | 457 bp | 60º
PC2 | 5′GACACAAGCAGACACTACGC3′
5′GAGACACACACTCTCTC3′ | 309 bp | 60º
Kir6.2 | 5′CCGTGGTGACACCTCAAGTGC3′
5′CTTGGGTGACGGTGCTTGC3′ | 497 bp | 62º
Glucokinase | 5′AAAGGTGATGAGACGGATGC3′
5′CATCTGGTGTTTGCTCTTC3′ | 230 bp | 60º
IAPP | 5′GAGAGAGCCACTGAATTACTTG3′
5′CTCGACCTGATTCGTTCTGG3′ | 471 bp | 60º
Insulin(b) | 5′GCCTTTGGAACCAACACTG3′
5′GCAATTGCTCCAGCCTGGT3′ | 258 bp | 61º

نتایج

با ارزیابی ایمونوستیمی معلوم گردید که با استفاده از روشهای RT-PCR و 4R-PCR به‌بخش اندازه‌های سلول‌های 2 و 3، نشان داده شد میکروسکوپ الکترونی نشان می‌دهد که سلول‌های حاضر در ارتباط شیکانین و دستگاه غددی به‌جای می‌باشد. دو دسته گرانول در این سلول‌ها قابل تشخیص است، یک دسته گرانول‌های های مادر می‌باشد و دسته دیگر گرانول‌های چند شکل اند (شکل 6) از دسته گرانول‌های مادر سه نوع قابل تشخیص می‌باشد، روشن ترها، کم‌رنگ (شکل 6C) نیز هستند. این سلول‌ها را در شکل (6A) ملاحظه کرد. در آن، فاصله بین سلول‌های مادر اندام و مادر در Gap Junction می‌توان مشاهده کرد (شکل 6B). می‌توان توانایی گرانول‌های خونی در ارتباط با سلول‌های مادر انسانی به میان پیوند خودرو است را ملاحظه کرد. برخی از ایمونوستیمی معلوم گردید که این سلول‌ها قادر به ترشح انزیم‌گوناگون می‌باشد.
شکل ۱: میکروسکوپی به‌ویژه مدل اناتومی Royan H1 به سلول‌های مولد اسولین در طی یک روش جذب مرحله‌ای صورت می‌گیرد. ارزیابی ابعادی و اینتونسیتی این سلول‌ها ثابت کرد که سلول‌های حاضر به بیان شیوع‌های سلول‌های اسولین (A) سلول‌های کلوکاکن (B) سلول‌های سوماتوتوماسی سلول‌های پیشین (C) سلول‌های پانکرنسی (D) می‌باشد.
در واقع یک Glut 1، β-actin
زن برای آن جام و اکتش ام است. 1 یک نتیجه بررسی های
اندازه گیری‌ها گلوکز است که هم سلول‌ها قادر به یان آن می‌باشد.

شکل ۲: سلول‌های در مورد رطوبیت پرتاب: مولکول کردن که سلول‌های حاصل
 قادر به یان قدرت خاصی

 insulation، Glucagon، Glut 2، PC1/3، PC2، Somatostatin، Pax4، Isl1، NKx6.1، Glut 1، Glucokinase، IAPP، α-cardiactin، Kir 6.2، Sur 1)

دخای‌ها و یا نجات‌های مدل (dhES) در حالی که سلول‌های بنیاده نمای
یده قدار به یان این زیر نیستند. و زن Oct4 که از ناخص‌های زن سلول‌های

بنیادی است یان می‌گردد. سلول‌های نماینده انسانی (uhES)
قدم به یان دو

شکل ۴: سلول‌های مورد نظریت شده مولکول کردن و این سلول‌ها توسط میست مستلزم. مسیر قطعی در اطراف این

سلول‌های ترکیب شده مورد ارزیابی است (A) سلول‌های فست مونت خورده مورد ارزیابی ایمونوهیستوپاتیقر گرفته این سلول‌ها قادر به ترکیب

اسلوئین (C) و گلوکازاکون (E) بوهد. بعد از ایمونوهیستوپاتیقر سلول‌ها با

DAPI رنگ آمیزی شدند (B).

و دانشگاه علوم پزشکی و خدمات بهداشتی- درمانی صدوقی پرست
بحث

دلیت ملیتس یک بیماری متابولیک است که در حدود 2-5 درصد دنیا به آن مبتلا می‌باشد. تخمین زده می‌شود تا سال 2025، 300 میلیون آفراد از افراد دنیا از این بیماری رنج می‌برند. دلیت ملیتس به دو دسته دلیت نوع I (غیر انسولین وابسته) و نوع II (واسته به انسولین) تقسیم می‌شود. برونت جزایر لانگی‌هانس پانکراس می‌تواند راه درمانی برای افراد مبتلا به دلیت باشد، اما افرادی که از برونت انسولین استفاده می‌کنند، باید از داروهای کم سیستم اینک تصفیف می‌کنند. استفاده نمایندگی که این می‌تواند مشکل بزرگی برای مبتلایان به وجود یادآوری، بله مشکل دیگری که این روش دارد تعادل کم افرادی است که مناسب برای داده برونت می‌باشد. (۱۸) و تیز تعادل کم جزایر برونت است، به ازای هر کیلوگرم از وزن خصوص 10000 جزایر لانگی‌هانس برونت برونت لازم است. این برای است که طور مرتبا به معنای مبتلایان به دلیت اضافه می‌شود. توجه به مطالعه گفته شده به نظر می‌رسد که بافت روش های درمانی جدیدی لازم و ضروری است. (۱۹)

از جمله روش‌های دیگر درمان استفاده از سلول‌های بین‌نظامی و یا نجاری است. ابتدا تبدیل سلول‌های بین‌نظامی جنین به گونه مختلف سلول‌های امکان‌پذیر که در روش‌های دیگر درمانی برخی بیماری‌ها برای محققین فراهم می‌شود. (۱۰) نتایج حاصل

مجله دانشگاه علوم پزشکی و خدمات بهداشتی – درمانی شهید صدوقی پردیس

دوره چهاردهم، شماره اول، بهار 1385

شکل D: سلول‌های مولکول‌انسان در روز 21 (A) و 19 روز بعد از برونت به وسیع (B) با آنتی‌ژن (G) به نام G17، و از دیوار اسمیوم‌های اورتوپپ (C)، دسته‌گذاری (D) و (g) نمایش داده شده، آنتی‌ژن gap junction (rER) هنگامی را ملاحظه کرد.
سلولهای مولده انسولین است. بیان این زن ۳۰ می تواند در فاصله زمانی کمی بعد از تجلی زنده مخصوص شرور تغییر NKx6.1 پانکراس مشاهده کرد. بیان زن NKx6.1 در سلولهای اندودوکرینی به سلولهای مولده انسولین متصل می شود. تجلی زن ۹۶ روزه تکثیر اجتماع سلولهای مولده انسولین لازم و ضروری است. تجلی این زن در سلولهای ای تالی شرور می گردد و در نهایت فقط به سلولهای با تنها می شود. از اولین دست فاکتورهای هومودبینی بیشتر به IsIl1 بیشترین دلخواه سلولهای بخش اندودوکرینی زودتر بررسی و مطالعه گردید. بیان این زن برای جریان Sولولهای اندودوکرینی تکثیر بخش اندودوکرینی پانکراس لازم است. از جمله زنده مهم دلخواه در تکثیر جریان پانکراس است. بیان را به تاکثیر سلولهای پانکراس به IsIl1 مناسب می کند. در این سلولهای عصبی در vitro از Sولولهای مولده Sولولهای اندودوکرینی و تکثیر بخش اندودوکرینی پانکراس لازم است. از این سلولهای عصبی در vitro می گردد. در کانال ۳ جریان در مورد IsIl1 از سلولهای انسولین بخش اندودوکرینی Sولولهای Mولده انسولین تغییر NKx6.1 نتیجه داشت که Sولولهای بخش اندودوکرینی پانکراس دامنه ای نامناسب داشته باشند. نشک فاکتورهای خارجی به دلیل تکثیر سلولهای بخش اندودوکرینی پانکراس دامنه ای نامناسب داشته باشند ۱۶. نیکوتین آمید است. از چنین نتیجه نیکوتین آمید است. از چنین نتیجه افزایش تعادل سلولهای بتا می گردد. نیکوتین آمید در بین زن (۹) مؤثر در تغییر نهایی سلولهای مولده انسولین) نفس بسیار دارد. (۸) قای سلولهای مولده انسولین یافت زهور در حضور نیکوتین آمید زایر می شود. (۱۷) مهربنی نسخه سلولهای بخش پانکراس ترشح انسولین در پایان ATP گلزسته است. در مطالعه صحبت گرفته با استفاده از انتکی نشان داده که سلولهای تغییرات نهایی قادر به RT-PCR بیان زنده بخش اندودوکرینی پانکراس مشاهده می‌شود. Mجموعه عکسگران خنثی در روند نکردن پانکراس و نحوه عمل آن نشک اساسی دارند از دسته این زن می تواند به Sur1, Kir6.2, NKx6.1, Pax4, GIP, Glut 2, Kir6.2 و NKx6.1 از دسته زنده مخصوص NKx6.1 PC2, PC1/3.
نکته‌ها به‌دست‌آمده‌ای که در مورد سلول‌های مولد انسولین اشاره داشتند، باعث می‌شود طی فازهای مختلف گلکوز سلول‌های بین‌پری‌دار جراحی به سلول‌های مولد انسولین استفاده کنند. در جریان نوپردازی گلکوز Sglut1 و Sglut2 از طریق ترجمه انزلیک در سلول‌های بین‌پری‌دار جراحی استفاده می‌شود. برای ثبت این اثبات، در این مطالعه، سلول‌های جراحی در ترکیب حاوی انژل‌های بین‌پری‌دار جراحی و گلکوز حاصل از درمان با سلول‌های مولد انسولین استفاده می‌شود.

در این مطالعه، سلول‌های جراحی در ترکیب حاوی انژل‌های بین‌پری‌دار جراحی و گلکوز حاصل از درمان با سلول‌های مولد انسولین استفاده می‌شود.

دانش‌آموخته علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی‌پور
References:

