طرح‌های بهینه‌سازی نانوحالهای لیپوزومی حاوی عصاره و بررسی سیمی سلولی آن بر روی رده سلولی سرطان پستان (MCF-7)

فرازه به‌کرات ۱، فاطمه ابوی مهریزی ۲، می‌بدی فاطمه حسینی‌زاده ۳
سماه‌های صنعتی خویدک ۴، محمود دهقانی اشکدی ۵

مقاله پژوهشی

مقدمه: پژوهش‌ها نشان داده‌اند که ترکیبات گیاهی دارای اثر ضد سرطانی قابل توجهی هستند و در صورت برطرف شدن جالب‌هایی پیش روی استفاده از آن‌ها می‌توانند جان‌پناهان مناسبی برای ترکیبات استاندارد را پدیدآورند. با این حال، بستگی به شرایط محیطی و مصرف شده است.

روش بررسی: پژوهش‌ها نشان داده‌اند که ترکیبات گیاهی دارای اثر ضد سرطانی قابل توجهی هستند و در صورت برطرف شدن جالب‌هایی پیش روی استفاده از آن‌ها می‌توانند جان‌پناهان مناسبی برای ترکیبات استاندارد را پدیدآورند. با این حال، بستگی به شرایط محیطی و مصرف شده است.

نتایج: نتایج پژوهش نشان داد که نانوحالهای لیپوزومی حاوی عصاره بیماری به‌کرات به عضله آزاد دارای سیمی بی‌بازی می‌باشند. مقدار نانوحالهای لیپوزومی حاوی عصاره بیماری به‌کرات به عضله آزاد دارای سیمی بی‌بازی می‌باشند.

واژه‌های کلیدی: نانوحاله‌های لیپوزومی، سلول سینه، سلول سینه (MCF-7)

ارجاع:
1- مرکز تحقیقات بیوتکنولوژی پزشکی دانشگاه آزاد اسلامی واحد اصفهان، اصفهان، ایران.
2- مرکز تحقیقات بیوتکنولوژی پزشکی دانشگاه آزاد اسلامی واحد اصفهان، اصفهان، ایران.
3- مرکز تحقیقات بیوتکنولوژی پزشکی دانشگاه آزاد اسلامی واحد اصفهان، اصفهان، ایران.
4- مرکز تحقیقات بیوتکنولوژی پزشکی دانشگاه آزاد اسلامی واحد اصفهان، اصفهان، ایران.
5- نویسنده مسئول، تلفن: 90133535120، پست الکترونیکی: mdashkezary@yahoo.com، کد پستی: 1041644455.
مقدمه
سرطان تکثیر غیرقابل کنترل سلول ها است که منجر به تشکیل توده ای موسوم به "تومور" می‌شود و با انتشار آن به سایر نقاط (متصسب) پایین و آدامه های دیگر نیز مرد هجوم می‌کشد. (۱۲) این بیماری اصلی‌ترین عامل مرگ و میر در کشورهای توسعه‌افزای کهن و دویم عامل مرگ و میر در پستان نیز شایع‌ترین بیماری و اولین عامل مرگ و میر در بین زنان جهان است به گونه ای که در کشور ایران متوسط درصد از موارد جدید سرطان و ۱۵ درصد از موارد مرده‌ها ناشی از آن، در سال ۲۰۱۵، مربوط به سرطان سینه بوده است. (۴) آمارهای نشان دهنده که سرطان سینه در زنان ایرانی ۲۳۴ درصد بیشتری از نمونه‌های مشابه در سایر کشورها در هر صهارغ نفر می‌گذارد (۵۴). در دمای سرطان، بسته به نوع، میزان پیشرفت سرطان وجود می‌باشد و وضعیت بیمار، ترکیبی از روش‌های مختلف مانند جراحی، رادیوتراپی و شیمی درمانی استفاده می‌گردد که چندین عوارض جانبی فراوان است. این روش‌های درمانی در مبارزه با سرطان غیر قابل پیش‌بینی هستند. از نمونه‌های این موارد می‌توان به پرستاری انتخاب داشته باشید که از طریق کنترل غیرقابل کنترل سلولی به آنها در مقابل ویروس مورد انتشار قرار می‌گیرد. به طوری که در برخی کشورها، کیهان پاتولوژی جدیدی، تایید از سیستم داروپزشکی محسوب می‌شود. (۱۰) پژوهشگران در این زمینه، تکنیک‌های کنترل غیرقابل کنترل سلولی، به‌طور کامل در حال اجرای مراحل نیروی پیشرفت و کاربردی شده‌اند. این بیماری این کشورها طی فعالیت‌های مختلف نیز توموری نیز هستند و باعث مهار سرطان در مراحل نیروی پیشرفت و کاربردی شده‌اند. این بیماری معمولاً درمان سرطان، کم و دورین‌های درمانی آن نیز سیلار باین است (۱۱) با وجود تمامی این مشایه، کاربرد
مشصور گیری از گیاه Nepeta persica

1. مشصور گیری از گیاه Nepeta persica

قبل از انجام عصاره گیری، کونه گیاهی مورد نظر توسط میکروسکوپی تحت تحقیقات و آموزش کوارژوری و منعطف طبیعی یزد شناسایی و تایید گردید. در مرحله بعد گیاهان جمع آوری شده را در شرایط مناسب Nepeta persica دمایی (77 ± 3 درجه سانتی‌گراد) و دور از نور خورشید خشک کردند. سپس به روش سوسکوله، عامل عصاره گیری از اندازه هوابی گیاه انجام شد. مقدار 25 گرم از گیاه خشک داخل محفظه کارتن فشرده شده و درون سیستم سوسکوله به حجم 250 میلی‌لیتر قرار داده شد. سپس 24 ساعت به‌طور منظم نیتروژن تبخیر کرد. در انتهای مرحله ای یک بالان سوی از سوسکوله تخلیه کرد. عصاره محلولی در PBS 1x به‌طور متوسط با تنها 5 میلی‌لیتر برای اثربخشی مصوب شد. به‌طور کلی عصاره گدرگی از اندازه هوابی گیاه انجام شد.

2. رسم نمودار استفاده عصاره از PBS از نظر اثرات ناشی از انرژی و نتایج تحقیقات

در این مرحله بر اساس نوع واکنش عصاره در حلال Nepeta persica در اثر انرژی و نتایج تحقیقات و انرژی و نتایج تحقیقات از PBS در حلال از این نوع از PBS در حلال از این نوع نتایج تحقیقات به پیشنهاد می‌باشد. در این مرحله بر اساس نوع واکنش عصاره در حلال نمودار استفاده عصاره از PBS در حلال از این نوع نتایج تحقیقات به پیشنهاد می‌باشد.

3. تهیه لیپوژوزوم های عصاره

کنector گیری از این نوع نتایج تحقیقات به پیشنهاد می‌باشد. در این مرحله بر اساس نوع واکنش عصاره در حلال نمودار استفاده عصاره از PBS در حلال از این نوع نتایج تحقیقات به پیشنهاد می‌باشد.

4. مهار از نتایج تحقیقات

در این مرحله بر اساس نوع واکنش عصاره در حلال نمودار استفاده عصاره از PBS در حلال از این نوع نتایج تحقیقات به پیشنهاد می‌باشد.

5. مراحل تولید لیپوژوزوم های عصاره

در این مرحله بر اساس نوع واکنش عصاره در حلال نمودار استفاده عصاره از PBS در حلال از این نوع نتایج تحقیقات به پیشنهاد می‌باشد.

6. روش تهیه لیپوژوزوم های عصاره

در این مرحله بر اساس نوع واکنش عصاره در حلال نمودار استفاده عصاره از PBS در حلال از این نوع نتایج تحقیقات به پیشنهاد می‌باشد.
زمان‌های مشخص صورت پذیرفته در اینجا به‌دست از
 PBS رابطه
 ماده کالیپرسان
 نپهتا (Nepeta persica)
 علاوه بر هورمون سبزیجات
 به‌طور معمول با اکسیژن
 و در دماهای
 ٣٧° C و
 ٣٩/٤ در زمان‌های مختلف و رسم
 نموادر آن قابل گردید.
 ٩) رده سلولی و محیط کشت

 این مطالعه در محیط آزمایشگاهی و با استفاده از رده سلولی
 MCF-7 سرطان سینه انگل‌شده. رده سلولی MCF-7
 استیمبو استروژت استوریز شده، این رده سلولی در فلزان‌کاهی
 یک یا یک مصرف کشت سلولی در
 محیط کشت ۱۶۹۰، ۱۰/۰ درصد در دما
 ۹° C بود.

 ١٠) تغییر سلولی و زندگیانسال

 نسبت سلولی به روش
 MTT بیو تغییر مطالعه شده
 بکارگرفته شد. به‌منظور اندوزه‌گیری، سلولی
 میکرو‌گرم بر میلی‌لیتر از عصاره آزاد و
 نپهتا (Nepeta persica) در
 محیط‌های کشت
 محسوب گردید. میکرو‌گرم بر
 میلی‌لیتر به چهار تکرار در
 چهار روز تمیز شدند. پس از
 آن مجددا به مدت ۴۸ ساعت در
 اکسیژن قرار گرفت. سیس
 میکرو‌گرم بر میلی‌لیتر
 MTT به چهار اضافه شد و به
 مدت ۴ ساعت اکسیژن کشت
 شدند. بعد از آن مابین
 دو روز خارج شد و به
 منظور حل کردن
 کریستال‌های فورمیزون
 ۱۵۰ میکرو‌گرم اضافه گردید.
 در هر مرحله برای خارج
 کردن مابع روبی، سنترونیزی
 صورت گرفت. جذب در طول موج
 ۵۶۰ نانومتر با استفاده از
 اسپیریال‌توم‌ئتر نیت گردید. و
 در نهایت به‌طور مابعد
 درصد زندگی سلول‌ها محاسبه شد.

 میلی‌لیتر به محیط کشت - یکنقطه - از
 میکرو‌گرم بر
 MTT (mg/ml)
 رابطه

 ۱۰۰

 ۴۱

 ۱۲۰۵

 ۱۳۹۸

 دوهر بیست و هفتم: شماره نهم - دومین هشتم صدفی دوز

 مجله دانشگاه علوم پزشکی و خدمات بهداشتی – همدان

 ۱۳۹۸
بررسی سمیت ناحول‌های لیپیدی حاصل عصاره Nepeta persica به سلول‌های سرطان سینه

که علت این امر را می‌توان به ایجاد شیب غلظت برقراری بین کیسه دیالیز و محیط اطراف ان نسبت داد. که سبب خروج عصاره از ناحول‌های لیپید و ورود آن به بافر PBS نشان دهنده کیسه دیالیز می‌گردد تا به یک حدا نهایی و مکسیمم برسد و در ادامه شیب نمودار ثابت و محسوس می‌شود. هم چنین با مقایسه نمودار راهش در دمای ۳۷°C و نمودار راهش در دمای ۴۳°C می‌توان نتیجه گرفت که میزان راهش در دمای ۴۳°C (شراط سلول سرطانی) بالاتر از راهش در دمای طبیعی (۳۷ درجه سانتی‌گراد) است که ثابت می‌کند که سلول‌های بینحول موترز دارو به سایت هدف گردیده است و در اصطلاح گفته می‌شود که سلول‌های دارای شرایط نیمه هدف مندی است.

بررسی الگوی رهش عصاره از ناحول‌های لیپیدی در Nepeta persica با استفاده از نمودار استاندارد عصاره (تصویر ۱) نمودار راهش عصاره در دمای ۳۷°C و PBS ۴۲°C و هتریتیپ با pH ۷/۴ و ۳/۴ رسم گردید (تصویر ۳) که بررسی الگوی رهش عصاره نشان می‌دهد که ناحول‌های لیپیدی در دمای ۳۷°C و اهسته رهش به دو راهش مختلف شده است که گونه ای که دحاصل کرده راهش عصاره از این ناحول‌های در دمای ۳۷°C و ۴۳°C به ترتیب ۳۸/۳ و ۳۷/۴ درصد باشد. علتهٔ این نمودار راهش در دمای ۳۷°C و ۴۳°C دو فاصله است که در فاصل نمودار، با یک رهش افزایش یافته‌روبهروهستین

جعبه دانشگاه علوم پزشکی و خدمات بهداشتی - دانشگاه شهید صدوقی پردیش (دیکا)
تصویر ۲: نمودار کالیبراسیون عصاره PBS در Nepeta persica

تصویر ۳: نمودار رهایش عصاره از تانوسامانه لیپوزومی در دمای ۳۷ و ۴۲ درجه سانتی‌گراد

Mean Dm.	۱۱۶.۵ nm
Mean Var.	۲.۴۵
Show	۳.۹۹

<table>
<thead>
<tr>
<th>Dm (μm)</th>
<th>C (μg)</th>
<th>Δ C (μg)</th>
<th>Δ dm (μm)</th>
<th>C (μg)</th>
<th>Δ C (μg)</th>
<th>Δ dm (μm)</th>
<th>C (μg)</th>
<th>Δ C (μg)</th>
<th>Δ dm (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۶.۴</td>
<td>۰</td>
<td>۰</td>
<td>۳۵۸.۸</td>
<td>۰</td>
<td>۰</td>
<td>۳۲۴.۷</td>
<td>۰</td>
<td>۰</td>
<td>۳۲۴.۷</td>
</tr>
<tr>
<td>۴۶.۴</td>
<td>۰</td>
<td>۰</td>
<td>۴۲۸.۴</td>
<td>۰</td>
<td>۰</td>
<td>۴۲۸.۴</td>
<td>۰</td>
<td>۰</td>
<td>۴۲۸.۴</td>
</tr>
<tr>
<td>۶۸.۴</td>
<td>۰</td>
<td>۰</td>
<td>۶۸۸.۴</td>
<td>۰</td>
<td>۰</td>
<td>۶۸۸.۴</td>
<td>۰</td>
<td>۰</td>
<td>۶۸۸.۴</td>
</tr>
<tr>
<td>۸۴.۸</td>
<td>۰</td>
<td>۰</td>
<td>۸۴۸.۸</td>
<td>۰</td>
<td>۰</td>
<td>۸۴۸.۸</td>
<td>۰</td>
<td>۰</td>
<td>۸۴۸.۸</td>
</tr>
<tr>
<td>۹۰.۵</td>
<td>۰</td>
<td>۰</td>
<td>۹۰۰.۵</td>
<td>۰</td>
<td>۰</td>
<td>۹۰۰.۵</td>
<td>۰</td>
<td>۰</td>
<td>۹۰۰.۵</td>
</tr>
<tr>
<td>۱۱۰.۵</td>
<td>۰</td>
<td>۰</td>
<td>۱۱۰۵.۵</td>
<td>۰</td>
<td>۰</td>
<td>۱۱۰۵.۵</td>
<td>۰</td>
<td>۰</td>
<td>۱۱۰۵.۵</td>
</tr>
</tbody>
</table>

Nepeta persica

تصویر ۴: اندازه‌گیری تانوسامانه لیپوزومی دارای عصاره نسبت به دمای ۳۷ و ۴۲ درجه سانتی‌گراد

Nepeta persica

تصویر ۵: پیامد زنی تانوسامانه درای عصاره

ملیه دانشگاه علوم پزشکی و خدمات بهداشتی- پرستاری شهید بهشتی ۱۳۹۸
دوره پیست و هفتم، شماره دوم، اردیبهشت ۱۳۹۸
گروه‌های هیدروکربنی است که سبب همبستگی
گروه‌های عاملی دیگر می‌شود. پیک 2359 cm$^{-1}$ مفرغ P-H است که شاخص حضور
گروه عاملی فسفین با پیوند کشی
رگ از ناحیه 1372-1398 cm$^{-1}$ مفرغ FT-IR نشان می‌دهد که در نانوسامانه بدون عصاره که
معروف حضور گروه‌های هیدروکربنی است در نانوسامانه حاوی عصاره به
حایی عصاره به 2855 cm$^{-1}$ جابه جا شده است و پیک 2360 cm$^{-1}$ در نانوسامانه حاوی عصاره نیز
تکرار شده است که
معروف حضور گروه عاملی فسفین است. به‌طور کلی مقایسه
دو نمونه نانوسامانه بدون عصاره و همراه با عصاره، اثبات
می‌کند که حضور عصاره در نانوسامانه هیچ گونه تعامل
شیمیایی با نانوسامانه که سبب از دست رفتن خاصیت
فازموکینیک عصاره شود، نداشته و هم چنین حضور عصاره
سپر تطبیق ساختاری نانوسامانه نیز نگردیده و ساختار
شیمیایی ترکیبات در نانوسامان حفظ شده است.

نتایج حاصل از بررسی طیف ماوون قرمز
مقاومه نمونه FT-IR حاصل از نانوسامانه حاوی ترکیبات
کلسترول و SPC نانوسامانه حاوی عصاره از
Nepeta persica از ناحیه 1372-1398 cm$^{-1}$ مفرغ FT-IR نشان می‌دهد که سببیاری از
گروه‌های عاملی به این دلیل که در ترکیب با یکدیگر و در
ساختار کروی لیپوزوم به کار رفته اند، با انتقال لیپید و ویتامین
عصاره به سامانه از دسترس خارج شده و محسوس
ان می‌گردد. با توجه به تصویر 6 پیک 3566 cm$^{-1}$ مشخصه
گروه عاملی کلر (RCH$_2$OH) و معرف حضور کلسترول در
سامانه است. از طرفی پیک 3966 cm$^{-1}$ نیز معرف حضور

تصویر 6: تصویر SEM از نانوسامانه لیپوزومی حاوی عصاره
Nepeta persica

تصویر 7: تصویر FT-IR سامانه لیپوزومی خالی (F3-Blank)
رگ نانوسامانه لیپوزومی حاوی عصاره
روش و عصاره گیاهی Nepeta persica

نتایج حاصل از بررسی سبب نانوسامانه حاوی عصاره
Nepeta persica

پیک 2359 cm$^{-1}$ مفرغ P-H است که شاخص حضور
گروه عاملی فسفین با پیوند کشی
رضیان در سامانه FT-IR نشان می‌دهد که این پیوند بتریب
حضور نانوسامانه حاوی عصاره بر این پیوند بتریب
را یافته‌ایی در نام و یافته‌ایی
نام نانوسامانه حاوی عصاره (زیست
نام نانوسامانه حاصل از بی‌هوشی است.
نتایج حاصل از بررسی طیف ماوون قرمز
مقاومه نمونه FT-IR حاصل از نانوسامانه حاوی ترکیبات
کلسترول و SPC نانوسامانه حاوی عصاره از
Nepeta persica از ناحیه 1372-1398 cm$^{-1}$ مفرغ FT-IR نشان می‌دهد که سببیاری از
گروه‌های عاملی به این دلیل که در ترکیب با یکدیگر و در
ساختار کروی لیپوزوم به کار رفته اند، با انتقال لیپید و ویتامین
عصاره به سامانه از دسترس خارج شده و محسوس
ان می‌گردد. با توجه به تصویر 6 پیک 3566 cm$^{-1}$ مشخصه
گروه عاملی کلر (RCH$_2$OH) و معرف حضور کلسترول در
سامانه است. از طرفی پیک 3966 cm$^{-1}$ نیز معرف حضور

تصویر 6: تصویر SEM از نانوسامانه لیپوزومی حاوی عصاره
Nepeta persica

تصویر 7: تصویر FT-IR سامانه لیپوزومی خالی (F3-Blank)
رگ نانوسامانه لیپوزومی حاوی عصاره
روش و عصاره گیاهی Nepeta persica

نتایج حاصل از بررسی سبب نانوسامانه حاوی عصاره
Nepeta persica

پیک 2359 cm$^{-1}$ مفرغ P-H است که شاخص حضور
گروه عاملی فسفین با پیوند کشی
رضیان در سامانه FT-IR نشان می‌دهد که این پیوند بتریب
حضر نانوسامانه حاوی عصاره بر این پیوند بتریب
را یافته‌ایی در نام و یافته‌ایی
نام نانوسامانه حاوی عصاره (زیست
نام نانوسامانه حاصل از بی‌هوشی است.
نتایج حاصل از بررسی طیف ماوون قرمز
مقاومه نمونه FT-IR حاصل از نانوسامانه حاوی ترکیبات
کلسترول و SPC نانوسامانه حاوی عصاره از
Nepeta persica از ناحیه 1372-1398 cm$^{-1}$ مفرغ FT-IR نشان می‌دهد که سببیاری از
گروه‌های عاملی به این دلیل که در ترکیب با یکدیگر و در
ساختار کروی لیپوزوم به کار رفته اند، با انتقال لیپید و ویتامین
عصاره به سامانه از دسترس خارج شده و محسوس
ان می‌گردد. با توجه به تصویر 6 پیک 3566 cm$^{-1}$ مشخصه
گروه عاملی کلر (RCH$_2$OH) و معرف حضور کلسترول در
سامانه است. از طرفی پیک 3966 cm$^{-1}$ نیز معرف حضور

تصویر 6: تصویر SEM از نانوسامانه لیپوزومی حاوی عصاره
Nepeta persica

تصویر 7: تصویر FT-IR سامانه لیپوزومی خالی (F3-Blank)
رگ نانوسامانه لیپوزومی حاوی عصاره
روش و عصاره گیاهی Nepeta persica

نتایج حاصل از بررسی سبب نانوسامانه حاوی عصاره
Nepeta persica
نتایج میکروسکوب الکترونی

تصویر 7 نانوحلاملی نانوپوستی دارای عصاره Nepeta ra زیر میکروسکوب الکترونی روبشی (SEM) نشان می‌دهد. بر اساس این تصویر مشخص می‌شود که نانوحلامل‌های لیپیدی عصاره با برخوردی از مورفولوژی کروی دارای توزیع مناسب هستند.

بررسی ورود نانوسامانه حاوی عصاره Nepeta persica به درون سلول بروز تأثیر در نانوسامانه‌های متغیر ورود نانوسامانه به درون سلول بهدست آمده است. به دنبال آن تهیه سیمیت نانوپوستی به دو گروه مواردی مشخص می‌شود که اثر گذاری نانوسامانه‌های فاقد عصاره و نانوسامانه‌های دارای عصاره با دو گروه مواردی مشخص می‌شود که اثر گذاری N. persica یا کنترل (Blank) عصاره نانوپوستی نانوسامانه‌های دارای عصاره N. persica به درون سلول های سرطانی MCF-7 با تأثیر باعث می‌شود که میزان 8/45 افزایش یابد.

تصویر 8 مقایسه سیمیت عصاره آراد Nepeta persica و نانوپوستی نانوسامانه‌ی دارای عصاره N. persica.
پژوهش حاضر منتهی به تحقیق و ساخت ناحیه ی لیپوزومی

دارای عصاره Nepeta persica اکسپرسیون 74/6/11 درصد، اندما درازه‌های دارد 116 و FT-IR
بتانسیز زنای mV7 ± 0/1/0.1 می‌باشد. بررسی SEM
آن حاکی از عدم برم کش شیمیایی میان دارو و سامانه و
مورفولوژی پیکنواخت و همگی‌سازی‌های است. این پژوهش ضمن
تایید اهمیت رشد بدن سامانه لیپوزومی، نشان می‌دهد که
حافک راهسایی در طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه مصرفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

علوی و همکاران در سال 1392 از گنگ در اوره
لیپوزومی دارای مصرف هیبرودزی اوره
مبینه مصرفها برمکنده یا از این مصرف به
پژوهش راه‌سازی دارد از طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه مصرفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

علوی و همکاران در سال 1392 از گنگ در اوره
لیپوزومی دارای مصرف هیبرودزی اوره
مبینه مصرفها برمکنده یا از این مصرف به
پژوهش راه‌سازی دارد از طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه مصرفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

علوی و همکاران در سال 1392 از گنگ در اوره
لیپوزومی دارای مصرف هیبرودزی اوره
مبینه مصرفها برمکنده یا از این مصرف به
پژوهش راه‌سازی دارد از طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه مصرفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

علوی و همکاران در سال 1392 از گنگ در اوره
لیپوزومی دارای مصرف هیبرودزی اوره
مبینه مصرفها برمکنده یا از این مصرف به
پژوهش راه‌سازی دارد از طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه مصرفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

علوی و همکاران در سال 1392 از گنگ در اوره
لیپوزومی دارای مصرف هیبرودزی اوره
مبینه مصرفها برمکنده یا از این مصرف به
پژوهش راه‌سازی دارد از طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه مصرفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

علوی و همکاران در سال 1392 از گنگ در اوره
لیپوزومی دارای مصرف هیبرودزی اوره
مبینه مصرفها برمکنده یا از این مصرف به
پژوهش راه‌سازی دارد از طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه موصفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

علوی و همکاران در سال 1392 از گنگ در اوره
لیپوزومی دارای مصرف هیبرودزی اوره
مبینه مصرفها برمکنده یا از این مصرف به
پژوهش راه‌سازی دارد از طی 82 ساعت، در شرایط سول‌های
نرم‌سازی و سمه موصفی 2015 و 30 درصد است.
هم چنین در بررسی سلولی آن مشخص شد که میزان سرمیت
عصاره لیپوزومی بر روی سلول‌های R7 سرطان بست.
نسبت به عصاره لیپوزومی نشده (آزاد) بیشتر است.

مجله دانشگاه علوم پزشکی و خدمات بهداشتی - دانشگاه شهید صدوقی برد
فrezane b�rkt va hromkaran

نمودن (۴۴). پژوهش مجدي زاده از نظر راندمان انگلريبوسين و پارا سطحي ناحيي در كنار تغیيرات در نوع ناو دره، روش ساخت و مانيت مادة انگلريبوسين شده بسيار نزديك به ژوهر حاضر مي باشد.

نتيجه گيري

در پژوهش حاضر نانوي‌هاي ليپوزومي حاوی عصاره ساخته شد که ضمن تايب و ميگي이라 نويگوشيمايي مناسب ان، دراي انگلريبوسين بالا، رهايش كنترل شده دارو در شرایط سكراتي و نمرال و افزایش سهول عصاره در حال انگلريبوسين شده در مقابله با حاله آزاد است. بنابراین با توجه به شواهد قوي مي توان نايسانمان ليپوزومي حاضر را به عنوان ترکيبي حامل مي مناسب جهت رسانش عصاره هاي كيميايي به سكراتي هاي سكراتي از ناحيه سكراتي پيشنهاد نمود.

سيستم ژاردي

اين تحقيق مستخرج از پايان نامه كارشناسي ارشد دانشگاه آزاد اسلامي واحد اشکورتي مي باشد و منابع مالي آن توسط نويسنديگان تامين شده است. در ضمن از همکاران علمي جنايي مقدم مجدي زاده نيز قدردانی مي شود.

تعارض در منافع: وجود ندارد.

References:

2-Hamta A, Ghazaghi S. The study of Thymus vulgaris Cytotoxicity effects on breast cancer cell's line. Quarterly Journal of Sabzevar University of Medical Sciences. 2014; 21(1):122-130

33- Cui H, Zhao C, Lin L. The specific antibacterial

34. Charraghzhal S, Samadlouie HR, Sowti M, Hamisekar H, Mokaram RR. Evaluation of the antimicrobial and antioxidant properties of Salvia essential oil nano liposome (Salvia multicaulis).

JFST 2017; 14(2): 271-82. [Persian]

Designing and optimization of liposomal nano-carriers containing *Nepeta persica* extract and study of its cytotoxicity on the breast cancer cell line (MCF-7)

Farzaneh Barakat¹, Fatemeh Aboee-Mehrizi², Bibi Fatemeh Haghiralsadat³, Samaneh Sedighi-Khavidak⁴, Mahmood Dehghani Ashkezari*⁴

Introduction: Studies have shown that plant compounds have significant anticancer effects that if the challenges of using them are resolved, can be the successor to the synthetic compounds commonly used in cancer therapy. Therefore, in this study, the liposomal nano-carriers containing Nepeta persica extract have been investigated in order to improve the physicochemical characteristics and evaluation of its antitumor properties.

Methods: The present study was an experimental study. Liposomal vesicles were prepared using SPC, cholesterol and PEG by thin-film method and the *Nepeta persica* extract was loaded into the liposomes. Their physicochemical characteristics were evaluated using Zeta Sizer, FTIR, SEM, and the release pattern of the extract was calculated at 37 °C and 42 °C. At the end, the toxicity of this nano-carriers containing the extract on the MCF-7 cell line of breast cancer has been studied.

Results: The results of the study showed that the nano-carriers containing the extract had an encapsulation efficiency of 67.11±5.74%, size of 116.9 nm, and -13.24 ± 1.01mV zeta potential, spherical morphology and controlled release. Also, the results of the toxicity of this nano-carrier containing the extract indicate that the liposomal extract has a higher toxicity to the MCF-7 cell line than the free extract.

Conclusion The results of this study show that nano-liposomes containing *Nepeta persica* extract, mean while having appropriate physiochemical properties, reduce the survival of breast cancer cells compared to non-liposomal extracts, and thus can be a good carriers for delivery of *Nepeta persica* extract to breast cancer cell.

Keywords: Nepeta persica, Liposome, Breast Neoplasm, MCF-7 Cells