بررسی مقایسه‌ای اثر عصاره هیدرولیک تخم‌کتان و گل محمدي بر وزن بدن، سطوح سرمی هورمون‌های تیروئیدی و شاخص‌های چربی خون موس صحرایی

امیر ادبی ۱، آمنه خوش‌رقنی ۲

مقاله پژوهشی

مقیدم‌ه: تیروئیدفنش‌های معمولی در مطالعه‌ی ۶۳ طرح سحرایی نژاد و سطح بیماری‌های فیزیولوژیکی در بیماری‌های متفاوت می‌شوند. در این مطالعه مکانیسم‌های بیماری‌های دوگانه و مقایسه‌ی آنرها بر وزن بدن، سطوح سرمی هورمون‌های تیروئیدی و شاخص‌های چربی خون موس صحرایی در سطح SPSS Inc., Chicago, IL; version 18 مقدار با استفاده از آنالیزهای آماری مقایسه‌ی یک‌واگون ANOVAs و تست one way تیگی را و تحلیل شدند.

نتایج: افزایش معنی‌دار در P-value ۰/۰۵ از همه گروه‌های تجربی (به‌جز گروه دریافت کننده گل محمدي با وزن ۵۰۰ mg/d) و کاهش معنی‌دار TSH در همه گروه‌های تجربی مشاهده شد. همه موش‌های صحرایی مورد مطالعه کاهش وزن را نشان دادند (P-value ۰/۰۵ و گروه‌های تجربی ۴/۰۴ تا ۷/۰۲). تری‌گلیسرید در همه گروه‌ها کاهش نشان داد (P-value ۰/۰۵ و گروه‌های تجربی ۰/۰۳ تا ۰/۰۰۱). HDL و کاهش معنی‌دار LDVLDL در روش تجربی و گل حمیدی و تجویز هژیمان این و کاهش وزن باعث افزایش معنی‌دار سبب کاهش دادند (P-value ۰/۰۵ و کاهش معنی‌دار LDVLDL. در همگونی TSH و کاهش معنی‌دار LDVLDL و کاهش معنی‌دار HDL در گروه‌های تجربی بر اساس مقایسه‌ی گروه کنترل، کاهش معنی‌دار داشت (P<۰/۰۵).

نتیجه‌گیری: گل محمدي و تخم‌کتان اثر افزایش تیروئید به‌طور نسبی و کاهش TSH شدن و این تغییرات از کاهش شاخص‌های چربی وزن و کلین پلاک سبب تخم‌کتان و گل محمدي، هورمون‌های تیروئیدی، وزن بدن و شاخص‌های چربی خون موس صحرایی

واژه‌های کلیدی: تخم‌کتان، شاخص‌های چربی، گل محمدي، هورمون‌های تیروئیدی، وزن بدن

ارجاع: ادبی امیر، خوش‌رقنی آمنه، بررسی مقایسه‌ای اثر عصاره هیدرولیک تخم‌کتان و گل محمدي بر وزن بدن، سطوح سرمی هورمون‌های تیروئیدی و شاخص‌های چربی خون موس صحرایی. مجله علمی پژوهشي دانشگاه علوم پزشكي شهيد صدوقی پز. دوره بیست و هفتم، شماره دو. اردیبهشت ۱۳۹۸، صفحات 1-8، کدپستی: 73135-۱۹۸۶، کهoshvaghti2004@gmail.com، پست الکترونیکی

[DOI: 10.18502/ssu.v27i2.1048]
مقدمه

غده تیروئید از جمله غدد درون‌رده بدن می‌باشد که نقش مهمی در فعالیت‌های منابعی‌کننده بدن ایفا می‌کند (1). این غده دو هورمون مهم به نام تیروئکسین (T3) و تری بدوئرینون (T4) را ترشح می‌کند که نقش بسزایی در فعالیت‌های منابعی‌کننده بدن دارا می‌باشد (2). امروزه موارد افزایش وزن بدن، هیپوئیدبی‌پسی و در آن آترواسکلوز به فراوانی تر می‌گردد (3). بنابراین باین‌آروز ون وزن و سطح لپیده‌ها خون می‌تواند موجب کاهش جرم کروز بیماری‌های قلبی و عروقی گردد (4). از داروهای شیمیایی سیاره مانند لازوتامین، کستمبارمین، کلوپیترات جهت کاهش سطح لپیده‌ها به گلپایگان این سلیقه‌ها (HDL) و افزایش سطح لپیده‌ها به گلپایگان سلیقه‌ها (LDL) استفاده می‌شود. اما با توجه به اینکه این داروها می‌تواند عوارض زایدی همچون تورم میوه‌ها، رادیومولیع، اختلالات کبدی، تهوع، سرگرمی و مشکلات گوارشی را به‌دلیل داشته باشد در مصرف این داروها با محدود‌گذاری مواجه هستیم (5). هیپوئیدبی‌پسی که در نتیجه عدم ترشح کافی هورمون‌های تیروئیدی رخ دهد سبب کاهش میزان منابعی‌کننده می‌شود. برکاری و یا کمک‌گذار غده تیروئید می‌تواند واکنش‌های بیوشیمیایی بدن را تحت تاثیر قرار دهد. این اختلال در اثر توده‌های مثل كمبود پیش از بیماری، و یا بیماری خون‌دار به‌وجود می‌آید (6). استفاده از گیاهان دارویی از زمان‌های دور را داشته و عوارض کمتر نسبت به داروهای شیمیایی ایجاد می‌کند و به بهبود کلیات که درمان‌های رایج قادر به کنترل بیماری‌های استفاده از این گیاهان توسعه می‌شود (7).

روش بررسی

در این مطالعه از روش‌های تجربی، برای تهیه عصاره هیدرولیکی کلم‌محشی و تخم‌کتان از روش‌های استاندارد عصاره‌گیری استفاده گردید (29). پس از تهیه هیپالان از مرکز مرجع دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهریه‌فره، شماره دو، اردبیشته 1998 موجه 313988500036

[DOI: 10.18502/ssi.v71.2.1048]
معتبر و تایید گروه زیستشناسی دانشگاه آزاد اسلامی واحد کاروزن و نتیجه نمود که این گروه نموده و به‌صورت پوست در آورده و آماده عصاره‌گیری گردید. جهت عصاره‌گیری هر کدام از گلبول‌های را به شمار جداولی که به دست آمده در دستگاه پرکلوتور قرار دادیم، و بعد از 2 ساعت شیر دستگاه پرکلوتور با تزریق گردید. برای بازکردن به محلول حاوی عصاره از آن خارج شود. سپس از با فلز قطعه فلزی طبی 96 درصد به‌طوری که عصاره خشک شود و خروجی محلول برگردND به آن اضافه نمودیم. در این حالت تمام عصاره از ترکیبات گیاهی خارج شد.

سپس محلول در دستگاه روتاری قرار دادیم تا کاملاً تغییر و تا بیشتر میزان همبستگی این آن تبخیر گردد. سپس محلول عملی مورد به‌دست آمده را در دستگاه دسیکانتری که به نوبه خود وصل بود دادیم. آن گاه محلول حاوی عصاره از آن کاملاً خشک شده کوبیده و به‌صورت پورت روی اورژین. در نهایت با توجه به دوز تزریقی به نرمال‌سالان و در نهایت به مخلوط گردد. همچنین عصاره که از جمله که با و در این‌داد دوره انجام پذیرفت و آماده‌سازی محلول نهایی به صورت روغن انجام و محلول‌ها در شرایط استاندارد آزمایشگاهی نگهداری گردید. برای انجام این پژوهش 36 سر میش صحراپیز نر نژاد و استفاده از 250 ساعت تقسیم‌بندی و در مراحل انجام که در مخلوط گردید. سپس به‌طور تصادفی با 6 گروه مقایسه‌پذیر شده. گروه کنترل، تنها آب و غذا معمولی دریافت کردن و هیچ‌گونه داروی دریافت نمی‌کردند.

گروه تجربی 1 و 2 که روزانه به‌ترتیب 300 و 500 mg/KgBw داروی مورد ذکر که تصور شده بود به کمک دستگاه پرکلوتور قرار دادیم. نتایج مشاهده شد تا آن‌ها ایونات از آزمایشگاهی رعایت گردید.

نتایج ملاحظات اخلاقی

پروپوزال این تحقیق توسط دانشگاه آزاد اسلامی واحد کاروزن تایید شده است (کالا خاکی)

IR. IAU. KAU. REC. 1397. 028 اصول اخلاقی کار با حیوانات آزمایشگاهی رعایت گردید.

نتایج

نتایج مربوط به میزان وزن نشان می‌دهد که کاهش می‌تواند در وزن میلی‌گرام گروه‌های دریافت کننده عصاره 500 و 500 و گروه دریافت کننده گل محمدی با دور 1000 و 500 mg/KgBw
همیزان عصاره کتان و گل ماهی در دو گروه میانگین غلظت عصاره تخم تان و HDL (mg/kg) نسبت به گروه کنترل بذر گردن وجود دارد (\(p < 0.05\)). آزمون‌های آماری مشخص کرد که کاهش بررسی‌های آماری، افزایش میانگین غلظت در میانگین غلظت و کاهش میانگین عصاره تخم تان و گل ماهی در نمودارهای هومون تا گروه کنترل وجود دارد (\(p < 0.05\)). نتایج مربوط به میانگین غلظت هومون کریزیدیونی (T_i) و اندازه T_h میانگین غلظت هومون T_i و T_h در گروه کنترل و گروه کنترل به طور هم‌زمان کاهش معنی‌داری نسبت به گروه دریافت کننده تخم تان با دوز 300 mg/kg و تریپناتیونین (T_i) در میانگین غلظت هومون تا گروه کنترل وجود دارد (\(p < 0.05\)) و تریپناتیونین (T_i) در میانگین غلظت هومون تا گروه کنترل وجود دارد (\(p < 0.05\)).

جدول 1: میانگین و انحراف معیار سرمی هومون های T_i و T_h در موش‌های صحرا گرد مورد مطالعه

<table>
<thead>
<tr>
<th>برآمتر</th>
<th>نمودارهای هومون (Mean±S.E.M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IU/ml)</td>
<td>(mg/ml)</td>
</tr>
<tr>
<td>گروه کنترل</td>
<td>1/24±1/19</td>
</tr>
<tr>
<td>تریپناتیونین</td>
<td>1/24±1/19</td>
</tr>
<tr>
<td>تریپناتیونین</td>
<td>1/24±1/19</td>
</tr>
<tr>
<td>تریپناتیونین</td>
<td>1/24±1/19</td>
</tr>
<tr>
<td>T<sub>i</sub> و T<sub>h</sub></td>
<td>1/24±1/19</td>
</tr>
</tbody>
</table>

*حرف a بینار وجود اختلاف آماری معنی‌داری بین گروه‌های مختلف در مقایسه با گروه کنترل می‌باشد که بر اساس آزمون آماری one way و تونی مشخص شده است.
درجه ۲ میانگین انحراف معیار وزن بدند و سطح سرمی گروه چربی در موشهای صحرایی مورد مطالعه

گروه (Mean±S.E. M)	وزن (گرم)	تری کلسسترول (mg/dl)	تری گلیسرید (mg/dl)	تری تیروکسین (mg/dl)	تری بدن‌پرتوسین (mg/dl)	بعنایت
۱	۲۹۹/۹±۷/۸	۴۹/۹±۷/۸	۴۱/۱±۷/۸	۴۵/۵±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۲	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۳	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۴	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۵	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱

توجه: با اجرای آزمون آماری One Way ANOVA، وجود یا عدم وجود اختلاف آماری میانگین وزن و تری‌ها در گروه‌های ترکیبی در مقایسه با گروه کنترل مشاهده نمی‌شود.

جدول ۳: جدول یا عدم وجود اختلاف آماری میانگین سرمی گروه‌های مایل به گروه‌های متفاوت در گروه‌های ترکیبی در مقایسه با گروه کنترل

گروه (Mean±S.E. M)	وزن (گرم)	تری کلسسترول (mg/dl)	تری گلیسرید (mg/dl)	تری تیروکسین (mg/dl)	تری بدن‌پرتوسین (mg/dl)	بعنایت
۱	۲۹۹/۹±۷/۸	۴۹/۹±۷/۸	۴۱/۱±۷/۸	۴۵/۵±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۲	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۳	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۴	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۵	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱

توجه: با اجرای آزمون آماری One Way ANOVA، وجود یا عدم وجود اختلاف آماری میانگین وزن و تری‌ها در گروه‌های ترکیبی در مقایسه با گروه کنترل مشاهده نمی‌شود.

جدول ۴: جدول یا عدم وجود اختلاف آماری میانگین سرمی گروه‌های مایل به گروه‌های متفاوت در گروه‌های ترکیبی در مقایسه با گروه کنترل

گروه (Mean±S.E. M)	وزن (گرم)	تری کلسسترول (mg/dl)	تری گلیسرید (mg/dl)	تری تیروکسین (mg/dl)	تری بدن‌پرتوسین (mg/dl)	بعنایت
۱	۲۹۹/۹±۷/۸	۴۹/۹±۷/۸	۴۱/۱±۷/۸	۴۵/۵±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۲	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۳	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۴	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۵	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱

توجه: با اجرای آزمون آماری One Way ANOVA، وجود یا عدم وجود اختلاف آماری میانگین وزن و تری‌ها در گروه‌های ترکیبی در مقایسه با گروه کنترل مشاهده نمی‌شود.

جدول ۵: جدول یا عدم وجود اختلاف آماری میانگین سرمی گروه‌های مایل به گروه‌های متفاوت در گروه‌های ترکیبی در مقایسه با گروه کنترل

گروه (Mean±S.E. M)	وزن (گرم)	تری کلسسترول (mg/dl)	تری گلیسرید (mg/dl)	تری تیروکسین (mg/dl)	تری بدن‌پرتوسین (mg/dl)	بعنایت
۱	۲۹۹/۹±۷/۸	۴۹/۹±۷/۸	۴۱/۱±۷/۸	۴۵/۵±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۲	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۳	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۴	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱
۵	۲۹۵/۹±۷/۸	۴۸/۵±۸/۴	۴۱/۱±۷/۸	۴۷/۲±۴/۳	۴۳/۶±۵/۴	نتیجه ۱

توجه: با اجرای آزمون آماری One Way ANOVA، وجود یا عدم وجود اختلاف آماری میانگین وزن و تری‌ها در گروه‌های ترکیبی در مقایسه با گروه کنترل مشاهده نمی‌شود.
بیان

مطالعه حاضر به منظور بررسی مقایسه‌ای اثر عصاره هیدروکالکلی گل محمدی و تخم‌تانن بر وزن بدن، صاحب‌پناه و قدرت حرکت در افرادی که مصرف گرفت که عصاره هیدروکالکلی گل محمدی و تخم‌تانن موجب افزایش هورمون تیروتیندی تریدوترویونین (TSH) و کاهش هورمون محور وارد شد. در این تحقیق مطالعه، به‌منظور تعیین اثر ثبات افعای فیطیت غسیبی ویژگی‌های عصاره هیدروکالکلی گل محمدی و تخم‌تانن بر وزن بدن، صاحب‌پناه و قدرت حرکت در افرادی که مصرف گرفت که عصاره هیدروکالکلی گل محمدی و تخم‌تانن موجب افزایش هورمون تیروتیندی تریدوترویونین (TSH) و کاهش هورمون محور وارد شد.

تیروتیندی در موش‌های صحرایی گیاه پرداختن این نتیجه حالش که عصاره گیاه پرداختن این نتیجه TSHیای تیروتیندی T1 و T2 و کاهش هورمون شده است که با توجه به اثر ماهی عصاره گیاه نجات افزایش هورمون پروتئین تریپته در اثر ماهی عصاره گیاه نجات افزایش هورمون باعث TSHیای تیروتیندی تریدوترویونین (TSH) و کاهش هورمون محور وارد شد.

کاهش میزان TSH و به‌دلیل این ترتیبات باش (28). با توجه به اینکه نتایج این تحقیق مشابه گیاه می‌باشد و تخم‌تانن و گل محمدی نیز هرج و انگشت دارای ترتیبات فلوروندی از پاشنه افزایش هورمون T1 و کاهش تحقیق حاضر نیز می‌تواند به دلیل اثر ماهی تخم‌تانن و گل محمدی بر روی ترشح هورمون پروتئین باش که کاهش وزن و اصلاحæی که نیز به‌دلیل افزایش فعالیت تیروتیندی و متولیسم دیده می‌باشد.

نمونه‌گیری و فرآیند (1994) در تحقیق ثبت تأثیر عصاره هیدروکالکلی و تیروتیندی یک داروی برداختن و گزارش نمونه‌کنی که روش گیاه زرگرکند در دوز واریان می‌باشد. TSHیای تیروتیندی T1 و T2 و لولی تایب TSH معنی‌داری بر روی ندارد؛ این افزایش T1 و T2 می‌تواند معنی‌داری بر روی ندارد؛ این افزایش T1 و T2 می‌تواند ناشی از افزایش یک در اثر ماهی تخم‌تانن و گل محمدی دیده می‌باشد که تابعیت الکالونی موجود گیاه زرگرکند اعمال شده است (2).

طاهری و همکاران (1995) در تأثیر عصاره هیدروکالکلی میوه گیاه سبز بر روی هورمون یای تیروتیندی برداختن و نتیجه گرفتند که این عصاره موجب تغییر می‌باشد. TSH معنی‌داری در سطح پلاسمایی هورمون یای T1 و T2 و کاهش TSH معنی‌داری در سطح پلاسمایی هورمون یای T1 و T2 و کاهش (1999) مشخص شد که عصاره ریشه گیاه ویانا سومنیا و عصاره بوست خسته باهنری پروپیون می‌تواند باعث افزایش فعالیت غدیر تیروتیندی شود که مکانیسم آن افزایش فعالیت کالترن و دیسموند و کاهش فعالیت (LPO) می‌باشد (39).

دوره تنفس و کاهش هورمون محور وارد شد.

مجله دانشگاه علوم پزشکی و خدمات بهداشتی- درمانی شهر یزد 1398

1395
در مطالعه که شهاری و همکاران (1387) به بررسی اثرات کرسفی کوهِن جنایی خون موسی وسوری پرداختند، نتیجه گرفتند که این یک موجب کاهش معنادار در کلسترول آمیکت و HDL-ی در میان نزادان و کاهش معنادار در VLDL و LDL تری گلسید تری گلسید و HDL-ی و افزایش قابل توجهی در کلسترول سرم را سبب می‌کرد. گاهی زوایایی بنیگ خویه از تری گلسیدها و فلاونونیدها و ایزوپروپونیدها نظیر نسیم و کاراکولی می‌باشد که احتمال دارد اثر کاهش گاهی زوایایی بر میزان کلسترول سرم به دلیل وجود همین ترکیبات فلاونونیدها و آیزوپروپونیدها موجود در عصاره هیدروالکلیک باشد (8).

جعفری دبیکی و همکاران (1387) در مطالعه‌ی برسی تاثیر عصاره هیدروفیکالکلی شیرینیان بر اجایت بالکاهای انتر‌پروپون و در ابیات خوش‌گیری‌های همرکال‌سولونیکمی و اموالی تری‌گلسید تری‌گلسید و LDL و HDL افزایش‌یا به‌دنبال مصرف عصاره هیدروفیکالکلی شیرین‌پایان در خرگوش‌ها مبتلا به همرکال‌سولونیک شده‌اند. کردند. گلسرن و بعضی‌گونه‌یان گلسرن‌یک‌سایدی از ترکیبات‌های اصلی رشن شیرین‌پایان باشند و برای معالجه‌ی هپرلیپیدیمی بکار می‌رود (20).

لیو و همکاران (2007) گزارش نمودند که روند سیر موجب کاهش سطح کلسترول بالاسما می‌شود. این ویژگی می‌تواند به شدت حضور ترکیبات اینتر‌پروپون موجود در آن باشد که بر متبت‌سولونیک تأثیر ترکیب‌های کلسترولی از ترکیبات می‌باشد که در کبد تبدیل می‌شود و کبدی از پسوند کلسترول در کبد و در نتیجه کاهش غلظت آن در پلاسما می‌شود (21). زارعی و همکاران (1391) گزارش کردند که عصاره آب‌الکلی که اویشن شیرازی سبب کاهش معناداری در میزان کلسترول و تری‌گلسید تری‌گلسید و افزایش معناداری در میزان HDL سرم می‌گردد که این می‌تواند به دلیل ترکیبات فلاونونیدها موجود در گیاه اویشن شیرازی باشد (22).
References:

40- Jafari Dn, Asgary S, Madani H, Naderi Ga, Mahzouni P. Effect of hydroalcoholic extract of
Glycyrrhiza glabra L. on atherosclerotic plaque in hypercholesterolemic rabbits. [Persian]

A comparative study on the effects of Linum usitatissimum and Rosa domascena hydro-alcoholic extracts on body weight, thyroid hormones, and lipids profiles in rats

Amir Adibi1, Ameneh Khoshvaghti2

Original Article

Introduction: Thyroid gland has a major function in the metabolism. Overweight lead to cardiovascular diseases. Linum usitatissimum and Rosa domascena are used in traditional medicine for weight loss. This study was done for find the mechanism of these plants; also compare their effects on weight, thyroid hormones, and lipids profile in rats.

Methods: 36 Wistar male rats were studied (control and 5 experimental groups) for 28 days. One day after the last intraperitoneally injection, rats were weighted, blood sampling was done and sera were separated. Lipids and thyroid hormones were assayed by biochemistry and Immunoassay methods, respectively. Data were analyzed at P≤0.5 level, by ANOVA, one way and t test via SPSS Inc., Chicago, IL; version 18.

Results: Increases in T3 hormone in all groups (except the group receiving Rosa domascena at a dose of mg/kg 500) and decreases in TSH in all groups compared to the control group were observed (P≤0.05). Weight loss was shown in all studied rats (group 1 P=0.03, group 2 P= 0.042, groups 3, 4, 5 P=0.000). In all groups, the levels of triglyceride decreased (groups 1, 2, 3, 4, 5 P=0.034, 0.05, 0.03, 0.02, 0.03). There were increase in the HDL and decrease in the VLDL in groups receiving high dose of Linum usitatissimum and Rosa domascena, as well as the group receiving these two extracts simultaneously, in comparison with the control group (P≤0.05). LDL level, in group 5, was lower compared to the control group (P≤0.05).

Conclusion: Rosa domascena and Linum usitatissimum increase T3 and decrease TSH, these lead to reduction in lipid index and ultimately a loss in weight. The effect of Rosa domascena is more significant than Linum usitatissimum.

Keywords: Linum usitatissimum, lipids index, Rosa domascena, Thyroid hormones, Body weight