نقش حفاظتی ویتامین E در جلوگیری از تغییرات نامطلوب بیسفونل A بر بافت بیضه هوش صحرایی: یک ارزیابی استریلولوژیک

مکل سلیمیانی مهرجانی، منیره محمودی، مریم همیه‌امجد

مقدمه: بیسفونل A به عنوان یک آنتی‌اسیدنت مبتنی بر اثرات استروژنی است و می‌تواند سبب ایجاد نقص اسیدیاتوی در بافت بیضه شود. هدف بررسی نقش ویتامین E در اثرات نامطلوب بیسفونل A بر بافت بیضه هوشی صحراایی می‌باشد.

روش بررسی: مهاجر صحراایی (نر) 32 گرم به چهار گروه (n=8) تقسیم شدند و به صورت دهنده به مدت 50 روز (3 گروه) تیمار قرار گرفتند. در گروه کنترل، بیسفونل A (25 mg/kg/day) به صورت مایع در گروه E به عنوان گروه کنترل (15 mg/kg/day) و بیسفونل A + ویتامین E تیمار شدند. پس از مدت 80 روز، سطح ماده دی‌آلفا‌هیدروکسی‌دلپوزیت (MDA) در بافت بیضه بیش از بیسفونل A و یگر افزایش یافت. بر اساس نتایج تیمار، بیسفونل A به عنوان یک آنتی‌اسیدنت قوی می‌تواند در اثرات نامطلوب بیسفونل A بر بافت بیضه جلوگیری کند.

نتیجه‌گیری: ویتامین E به عنوان یک آنتی‌اسیدنت قوی می‌تواند در اثرات نامطلوب بیسفونل A در جلوگیری از تغییرات نامطلوب بیسفونل A بر بافت بیضه هوش صحرایی، برای یک ارزیابی استریلولوژیک استفاده شود.

ارجاع: سلیمیانی مهرجانی مکل، منیره محمودی، مریم همیه‌امجد. مریفی‌هی نقش حفاظتی ویتامین E در جلوگیری از تغییرات نامطلوب بیسفونل A بر بافت بیضه هوش صحرایی: یک ارزیابی استریلولوژیک. مجله علمی پژوهشی دانشگاه علوم پزشکی شهید صدوقی وردوره بیست و ششم، شماره گردی: 1296

1. استاد بهداشت ساختمانی و چین‌شناسی. گروه ریزش شناسی. دانشگاه علوم پزشکی شهید صدوقی وردوره، اراک، ایران
2. استاد بهداشت و درمان (گلایش سیستمی). گروه ریزش شناسی. دانشگاه علوم پزشکی شهید صدوقی وردوره، اراک، ایران
3. کارشناسی ارشد یونیتی، گروه ریزش شناسی. دانشگاه علوم پزشکی شهید صدوقی وردوره، اراک، ایران
m-soleimani@araku.ac.ir

(*) نویسنده مسئول: تلفن: 088-918016701، پست الکترونیکی: m-soleimani@araku.ac.ir

 Downloaded from iusssu.ac.ir at 8:58 IRST on Sunday March 15th 2020
برای انجام این پژوهش از 24 سر موش صحرایی بر تولید نازدیک و پستن با میانگین وزنی 15±20 گرم خردالری شده از استیستی تیستر ایران استفاده گردید.

راهبرد

حصل مقدمه

برای انجام این پژوهش، تیمار گروه‌ها و نمونه‌گیری برای انجام این پژوهش از 24 سر موش صحرایی بر تولید نازدیک و پستن با میانگین وزنی 15±20 گرم خردالری شده از استیستی تیستر ایران استفاده گردید.

برای انجام این پژوهش، تیمار گروه‌ها و نمونه‌گیری برای انجام این پژوهش از 24 سر موش صحرایی بر تولید نازدیک و پستن با میانگین وزنی 15±20 گرم خردالری شده از استیستی تیستر ایران استفاده گردید.

برای انجام این پژوهش، تیمار گروه‌ها و نمونه‌گیری برای انجام این پژوهش از 24 سر موش صحرایی بر تولید نازدیک و پستن با میانگین وزنی 15±20 گرم خردالری شده از استیستی تیستر ایران استفاده گردید.

برای انجام این پژوهش، تیمار گروه‌ها و نمونه‌گیری برای انجام این پژوهش از 24 سر موش صحرایی بر تولید نازدیک و پستن با میانگین وزنی 15±20 گرم خردالری شده از استیستی تیستر ایران استفاده گردید.
در سومه، در خانه حیوانات داشتشه اراک و در شرایط استاندارد شامل دما 21 درجه سانتی‌گراد، نور محیطی شرایط 12 ساعت تاریک و 12 ساعت رژوهی و دسترسی آزاده به آب و غذا نهاداری شدند. سپس به طور تصادفی در یک گروه ۶ تایی شامل کنترل (نیم روز ذرت، بپسپلن A) و پسپلن E (۱۵۰ mg/kg) و پسپلن (۱۵۰ mg/kg) E و پسپلن (۱۵۰ mg/kg) E (Sigma-Aldrich)

دوژه‌های بوم ادامه برای نیم روز با بپسپلن A (Sigma-Aldrich, Steinheim, E) و پسپلن (Sigma-Chemie GmbH)

برای نیم روز با بپسپلن A (Sigma-Aldrich, Steinheim, E) و پسپلن (Sigma-Chemie GmbH)

برای نیم روز با بپسپلن A (Sigma-Aldrich, Steinheim, E) و پسپلن (Sigma-Chemie GmbH)

برای نیم روز با بپسپلن A (Sigma-Aldrich, Steinheim, E) و پسپلن (Sigma-Chemie GmbH)
مرور نظر: به طور میانگین ۵ میکرون دید از هرش ۵ میکرون بافت پیش (با دقت ۱۰۰) ثبت شده و با قرار دادن پروب مخصوص سطح بر روی میسانها دید اندازه‌گیری کل نقاط بروخور نرده از پروب با تصویر پیشگیری و کل نقاط بروخور نرده از پروب هم‌زمان سطح با سطح لومینیت‌های زایی که در این مقاله به عنوان تعداد پروب‌های زایی در مجموع بروخور نرده از پروب در پرونده زایی می‌شناخته شده‌اند.

با استفاده از روش نمونه‌گیری تصادفی نمونه‌برداری از هرش ۵ میکرون به طور میانگین ۵ میکرون دید اندازه‌گیری شده. به قرار دادن تصادفی ۱۵۰ لومینیت‌های زایی در پرونده زایی، تعداد پروب توسط پروب‌های زایی نرده که کل نقاط بروخور نرده از پروب هم‌زمان سطح با سطح لومینیت‌های زایی که در این مقاله به عنوان تعداد پروب‌های زایی در مجموع بروخور نرده از پروب در پرونده زایی می‌شناخته شده‌اند،

\[V_{Density} = \sum_{i=1}^{n} \frac{P_i}{\sum_{i=1}^{n} P_i} \]

\[V_{interstitial} = \alpha \times V_{Density} \]

\[L_0 = L_s \times L_v \]

\[L_0 = 2 \times \frac{\sum_{i=1}^{n} Q_i}{P_i} \]

\[L_s = L_v \times L_{0} \]

به منظور تخمین میانگین ضخامت غشای پایه لوله‌های منی‌ساز، از تمام پربرهای ۵ میکرونی توسط عددی میکروسکوپ‌های طور میانگین ۲۴ میکرون برای داده انتخاب و پروب دارای خلکتوپیکی بدون سوگیری بر روی میسان‌های دید اندازه‌گیری شده از محل بروخور خلکتوپیک بر روی سطح داخلی غشای پایه، خطوط عمود بر ممسنج سطح خارجی غشا کشیده و سپس طول این خط توسط نرم‌افزار مودیک اندازه‌گیری شد. در اینجا با استفاده از روش دامنه‌گیری هارمونیک، میانگین ضخامت غشای پایه لوله‌های منی‌ساز محاسبه گردید. (۳)

برای محاسبه تعداد سطح‌های اسپرماتوگونی، اسپرمائتونیت، اسپرمامید (گرد و دراز) و سطح‌های سرتویی از روش Optical dissector، فرم مخصوص شمارش و دستگاه میکروسکوپ مدل ND به منظور تخمین میانگین قطر لوله‌های منی‌ساز قریم مخصوص شمارش به طور تصادفی بر روی میدان‌های دید اندازه‌گیری (برازگنده) ۱۰۰۰ برای (از میدان‌های دید اندازه‌گیری شده و نقطه کوچک حدود ۱۵۰۰۰۰۰ لوله منی‌ساز اندازه‌گیری شده توسط پروب با کام (۱۸) تخمین‌آوری می‌کرد (۱۹).

برای اندازه‌گیری انتخابی از سطح بافت (سرع نظر شد) سپس به میزان ۱۰ میکرون در جهت محور Z در عمق بافت پایین آمدن و در هنین‌کار به دست آمده که برای این
بررسی و سنجش میزان تستوسترون سرم

برای اندازه‌گیری تستوسترون سرم از کیت استفاده شده است. ELISA (EIA-1559) ایمنولوژیک ارزیابی رقابتی هبه است (24). روش استفاده‌گرگ میزان تستوسترون سرم از کیت جزئی و تحلیل آماری داده‌ها با استفاده از نرم‌افزار SPSS (version 16) و روش آنالیز ملاحقات اختلافی پروپوزال این تحقیق توسط دانشگاه اراک نامی شده است. لازم به ذکر است که در این تحقیق، کلیه ضوابط اختلافی رعایت گردیده است.

نتایج

حجم کل پیشی، ولعه‌های منیساز و بافت بینایینی

میانگین حجم کل پیشی (χ<0.05) و ولعه‌های منیساز در گروه بیسفونتول نسبت به بازار فروهرها کاهش معناداری را نشان داد. افزایش پارامترهای فوق در گروه تیمز هم‌زمان ویژنی E بیسفونتول A معنادار بود (χ<0.05) از میانگین حجم بقایی بینایینی در بین چهار گروه اختلاف معنادار مشاهده شد (χ<0.05) (جدول 1) (جدول 1): مقایسه میانگین حجم کل پیشی، حجم ولعه‌های منیساز و بافت بینایینی در گروه‌های مختلف مصرف صحرایی بعد از 8 هفته (3 باز در هفته) نیمر با بیسفونتول A (50 mg/kg) و ویتامین E (15 mg/kg) (و جدول 3).

جدول 1. مقایسه میانگین حجم کل پیشی، حجم ولعه‌های منیساز و بافت بینایینی در گروه‌های مختلف مصرف صحرایی بعد از 8 هفته (3 باز در هفته) نیمر با بیسفونتول A (50 mg/kg) و ویتامین E (15 mg/kg) (و جدول 3).

در بیست و هشتم و ششم، شماره دو، اردیبهشت

مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی برد

101

مرکز سلول‌های مه‌رنگی و همکاران

غلظت MDA بر حسب نانومول میلی لیتر (nmol/ml) و بر اساس منحنی استاندارد محاسبه شده است. جذب نیوی MDA = Y → 0.1 × Y (nmol/ml)

بررسی و سنجش میزان والسوهل های مانون دی آلدهد سرم

بعد از عمل خون‌گیری از خون موش‌ها و سانتریفژ نمونه‌های خون بعد 10 دقیقه و 1 الی 2 ساعت، با استفاده از سامپل سرم هر نمونه جدا و مجددا به مدت 5 دقیقه و 1 الی 2 ساعت سانتریفژ شد. در پایان، نمونه‌های سرم در دمای 40- درجه سانتی‌گراد تا زمان مورد نیاز به‌کار گرفته شدند. برای اندازه‌گیری غلظت مالدید آلدهید (MDA) و مولکول‌های تولیدی توسط سامپل‌های سرم با ترکیب TCA-TBA-HCL محلول (7.15% گرم بر میلی لیتر)، 2.75% گرم بر میلی لیتر 10% تیاریه یونیت اسید (HCL) و 0.25% گرم بر میلی لیتر اسید تولید شد. نمونه‌های تولید شده روی کار بود که 15 میلی لیتر از نمونه 1 میلی لیتر از محلول TCA-TBA-HCL مخلوط و به مدت 15 دقیقه در میکرو ویور جوش(95 درجه سانتی‌گراد) قرار داده شد. سپس نمونه‌ها به مدت 10 دقیقه سانتریفژ شدند.

مربع روبه رو به دقت جدا و جذب آن در طول موج 532 نانومتر توسط دستگاه اسپکتروفوتومتر در برابر بلک خواده شد. در این مطالعه از MDA روش TBA وانکساد اداس و ترکیبی با رنگ صورتی تولید می‌گردید که یکتا با تغییرات بالا می‌باشد. از مقاله مالدید آلدهید با استفاده از مقدار خاکی (Exinction) گرفته می‌شود. (1/5 ملی‌لایه موردی استراتی 2.10 M-1 cm1) که عبارت است از coefficient منابع میانگین‌ها با کارگاه‌های مختلف دارای تفاوت معنادار نسبت به یکدیگر می‌باشد.

(One way ANOVA, Tukey’s test, P<0.05)
ماتیک یا تعداد سالهای اسپرما‌توتوسی، اسپرما‌توتوسی (گرد و دراز) و سرتوتی میانگین تعداد سالهای اسپرما‌توتوسی در گروه بیسفنوتل و تنوع منتیادی در اسپرما‌توتوسی، اسپرما‌توتی، اسپرما‌توتی گرد و دراز و سرتوتی به تعداد سالهای اسپرما‌توتوسی (۲۰۰۰)<۸۰). اسپرماتید گرد و سرتوتی (۲۰۰۰)<۸۰) در طور معنی‌داری نشان داد که گروه بیسفنوتل با گروه و تنوع منتیادی E نسبت به گروه و تنوع منتیادی E نسبت به گروه بیسفنوتل A نسبت به گروه E و تنوع منتیادی E نسبت به گروه بیسفنوتل A نسبت به گروه و تنوع منتیادی E نسبت به گروه بیسفنوتل A نسبت به گروه و تنوع منتیادی E نسبت به گروه بیسفنوتل A نسبت به گروه و تنوع منتیادی E نسبت به گروه بیسفنوتل A نسبت به گروه و تنوع منتیادی E نسبت به گروه بیسفنوتل A نسبت به گروه و تنوع منتیادی E نسبت به گروه B

جدول ۲ میانگین سالهای طول، قطر، ضخامت غشاء و ارتفاع این تیجوم در گروه‌های مختلف موش صحرا شبیه ۸ هفته (۳) بهار

(جدول ۳)

(One way ANOVA, Tukey’s test, P < 0.05)
مقدار محتوی

وزن رت و وزن بیضه

میانگین وزن موش‌ها بعد از اتمام دوره تیمار در بین گروه‌های مختلف تفاوت معنی‌داری را نشان نداد (P>0.05). اما میانگین وزن بیضه موش‌های تحت تیمار با بیسفنول E نسبت به گروه (جدول ۴).

جدول ۴: مقایسه میانگین وزن بدن و وزن بیضه در گروه‌های مختلف موش صحرایی بعد از ۸ هفته (۵ بار در هفته) تیمار با بیسفنول A (۰.۵ mg/kg) و بیسفنول E (۰.۵ mg/kg).

<table>
<thead>
<tr>
<th>وزن بیضه</th>
<th>نسبت به وزن (gr)</th>
<th>وزن بین در پایان (gr)</th>
<th>وزن بعد از تیمار (gr)</th>
<th>گروه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>۰/۰۵±۰/۲۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>بیسفنول A</td>
</tr>
<tr>
<td>بیسفنول A</td>
<td>۰/۰۵±۰/۲۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>بیسفنول A</td>
</tr>
<tr>
<td>بیسفنول E</td>
<td>۰/۱۷±۰/۳۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>بیسفنول E</td>
</tr>
<tr>
<td>ویتامین</td>
<td>۰/۱۷±۰/۳۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>۲/۳۴±۱/۲۷</td>
<td>بیسفنول E</td>
</tr>
</tbody>
</table>

(One way ANOVA, Tukey’s test, P < 0.05)

میانگین ها با کد حرف‌های مختلف دارای تفاوت معنی‌داری نسبت به یکدیگر می‌باشند.

افزاری معنی‌داری در سطح MDA سرم رت‌های تحت تیمار با بیسفنول A در مقایسه با گروه کنترل دیده شد (P<۰/۰۵) در حالی که ویتامین E نمره با کاهش معنی دار (P<۰/۰۵) در سطح غله‌های تیمار در گروه بیسفنول A و بیسفنول E نسبت به گروه MDA بیسفنول A کنترل بیشتر (جدول ۵).

جدول ۵: مقایسه میانگین غلظت هورمون تستوسترون و مالون دی آندهید سرم در گروه‌های مختلف موش صحرایی بعد از ۸ هفته (۵ بار در هفته) تیمار با بیسفنول A (۰.۵ mg/kg) و بیسفنول E (۰.۵ mg/kg).

<table>
<thead>
<tr>
<th>غلظت موش دی آندهید سرم (nmol/ml)</th>
<th>غلظت تستوسترون سرم (ng/ml)</th>
<th>گروه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>۰/۱۷±۰/۲۷</td>
<td>۲/۳۴±۱/۲۷</td>
</tr>
<tr>
<td>بیسفنول A</td>
<td>۰/۱۷±۰/۳۷</td>
<td>۲/۳۴±۱/۲۷</td>
</tr>
<tr>
<td>بیسفنول E</td>
<td>۰/۱۷±۰/۳۷</td>
<td>۲/۳۴±۱/۲۷</td>
</tr>
<tr>
<td>ویتامین</td>
<td>۰/۱۷±۰/۳۷</td>
<td>۲/۳۴±۱/۲۷</td>
</tr>
</tbody>
</table>

(One way ANOVA, Tukey’s test, P < 0.05)

میانگین ها با کد حرف‌های مختلف دارای تفاوت معنی‌داری نسبت به یکدیگر می‌باشند.

تغییرات هیپوستاتولوزی بیضه

در بیضه موش‌های گروه کنترل، لوله‌های مینی‌ساز و ایپلیوم را بینیم‌های لوتیک و سلول‌ها دارای طیف و بهم پیوسته بی‌چسب یوند (شکل ۱). در بیضه موش‌های گروه بیسفنول A، ارتباط لوله‌های مینی ساز مشاهده شد. در این گروه ارتفاع ایپلیوم زایی نسبت به دیگر
بحث

در این مطالعه بیسفنول A موجب کاهش معنی‌دار میانگین حجم کل بیضه و حجم لوله‌های منی‌ساز در مقایسه با گروه کنترل گردید. با توجه به این که حجم بیضه از لوله‌های منی‌ساز تشکیل شده است (۳۳)، بنابراین، کاهش حجم بیضه ممکن است ناشی از کاهش حجم لوله‌های منی‌ساز باشد.

کاهش حجم لوله‌های منی‌ساز نیز می‌تواند به دلیل آتروفی و کاهش قطر لوله‌های منی‌ساز در اثر تبیمار با بیسفنول A باشد که در پژوهش دیگران نیز گزارش شده است (۴۷). از طرفی آتروفی لوله‌های منی‌ساز در گروه بیسفنول A احتمالاً از طریق کاهش فعالیت آنزیم‌های استروئیدوزینیک بیشتر (۴۶) آبی‌پرو تر در سلول‌های جنسی و کاهش تعداد سلول‌های هاپس‌ریز و کاهش حجم سلول‌های منی‌ساز در اثر تبیمار با بیسفنول A است (۴۷). بنابراین در سلول‌های جنسی و

همچنین کاهش قطر و ارتفاع ایی تلیوم زایشی گزارش شد (۸). همچنین کاهش قطر و ارتفاع ایی تلیوم زایشی لوله‌های منی‌ساز در بیضه موش‌های صحرایی ۵۰–۶۰ mg/kg/day تحت تیمار A به مدت ۷ هفته (۶) روز در هفته (۶) کاهش شده است (۷). دلیل این کاهش قطر لوله‌های منی‌ساز، کاهش تعداد سلول‌های هاپس‌ریز و جنسی در اثر بیسفنول A با احتمال افزایش سلول‌های منی‌ساز در اثر تبیمار با بیسفنول A احتمالاً از طریق کاهش فعالیت آنزیم‌های استروئیدوزینیک بیشتر (۴۶) آبی‌پرو تر در سلول‌های جنسی و کاهش تعداد سلول‌های هاپس‌ریز و کاهش حجم سلول‌های منی‌ساز در اثر تبیمار با بیسفنول A است (۷). بنابراین در سلول‌های جنسی و

این روند باعث کاهش معنی‌دار قطر، ارتفاع و حجم بیضه و حجم لوله‌های منی‌ساز در اثر تبیمار با بیسفنول A می‌شود.

در این مطالعه بیسفنول A موجب کاهش معنی‌دار میانگین حجم کل بیضه و حجم لوله‌های منی‌ساز در مقایسه با گروه کنترل گردید. با توجه به این که حجم بیضه از لوله‌های منی‌ساز تشکیل شده است (۳۳)، بنابراین، کاهش حجم بیضه ممکن است ناشی از کاهش حجم لوله‌های منی‌ساز باشد.

کاهش حجم لوله‌های منی‌ساز نیز می‌تواند به دلیل آتروفی و کاهش قطر لوله‌های منی‌ساز در اثر تبیمار با بیسفنول A باشد که در پژوهش دیگران نیز گزارش شده است (۴۷). از طرفی آتروفی لوله‌های منی‌ساز در گروه بیسفنول A احتمالاً از طریق کاهش فعالیت آنزیم‌های استروئیدوزینیک بیشتر (۴۶) آبی‌پرو تر در سلول‌های جنسی و کاهش تعداد سلول‌های هاپس‌ریز و کاهش حجم سلول‌های منی‌ساز در اثر تبیمار با بیسfenol A است (۷). بنابراین در سلول‌های جنسی و

همچنین کاهش قطر و ارتفاع ایی تلیوم زایشی گزارش شد (۸). همچنین کاهش قطر و ارتفاع ایی تلیوم زایشی لوله‌های منی‌ساز در بیضه موش‌های صحرایی ۵۰–۶۰ mg/kg/day تحت تیمار A به مدت ۷ هفته (۶) روز در هفته (۶) کاهش شده است (۷). دلیل این کاهش قطر لوله‌های منی‌ساز، کاهش تعداد سلول‌های هاپس‌ریز و جنسی در اثر بیسfenol A با احتمال افزایش سلول‌های منی‌ساز در اثر تبیمار با بیسfenol A احتمالاً از طریق کاهش فعالیت آنزیم‌های استروئیدوزینیک بیشتر (۴۶) آبی‌پرو تر در سلول‌های جنسی و کاهش تعداد سلول‌های هاپس‌ریز و کاهش حجم سلول‌های منی‌ساز در اثر تبیمار با بیسfenol A است (۷). بنابراین در سلول‌های جنسی و

این روند باعث کاهش معنی‌دار قطر، ارتفاع و حجم بیضه و حجم لوله‌های منی‌ساز در اثر تبیمار با بیسfenol A می‌شود.
تثبّت به‌جای بر اثر بیسفنول A باشند که منجر به تخریب این اتصالات و نیز ضد خونی‌سازی ای می‌گردد (۴۲،۴۳). علاوه بر
این کاهش سطح تستوسترون، نیز اختلالات در سد خونی-ری ای باعث جلوگیری از پیش‌روی تکراتوم سلولی در
سلول‌های جنسی شده و در نتیجه موجب شدن این سلول‌ها به صورت ناپایدار و زود هنگام جلوگیری می‌گردد (۴۴). کاهش غلظت هورمون تستوسترون ممکن است
دلیل دیگری برای اختلال روی اسیرپاموتوزن، آتروفی
لوله‌های منی ساز و دندره شدن سلول‌های جنسی در اثر
بیسفنول A باشد (۴۵). بنابراین، در این مطالعه غلظت تستوسترون در ۴۲ نفر تیمار شده با بیسفنول
نسبت به گروه کنترل کاهش معنی‌داری را نشان داد. در
این زمینه یافتگی که بیسفنول A می‌تواند در طیف کاهش
بان پروتئین حامل کلسترول که STAR نام دارد (تستوسترون
در سلول‌های لیدیک از کلسترول ساخته می‌شود) و کاهش
بان برخی از اندروپروستودئنترین موتور در فراپلیود
۴۱٪ تستوسترون در قلبی به P۴۵۰scc و P۴۵۰ض-۴۵۰ض
می‌توان یک دلیل دیگر برای کاهش غلظت تستوسترون در اثر
تیمار با بیسفنول A باشد.

آن آلوده زیست محیطی می‌تواند از طریق ایجاد استرس
کاهشیها، افزایش سیست‌ها به‌جای اسیرپاموتوزن و
تغییر نسبت بین سلول‌های جنسی در مراحل مختلف رشد و
نمو (۲۲، ۲۳) و نقش آیوپتوز در اثر پهلوی و نسبت
سیگنال‌های Fasl/FasL سیگنال‌های Fas/FasL و هورمون
یه در اتصال هورمون به گیرنده‌های خود (۹) نیز
یافتگی در اتصال هورمون به گیرنده‌های خود (۹) نیز
یافتگی در اتصال هورمون به گیرنده‌های خود (۹) نیز
یافتگی در اتصال هورمون به گیرنده‌های خود (۹) نیز
یافتگی در اتصال هورمون به گیرنده‌های خود (۹) نیز
یافتگی در اتصال هورمون به گیرنده‌های خود (۹) نیز
یافتگی در اتصال هورمون به گیرنده‌های خود (۹) نیز

تیمار با بیسفنول A باشد.

چنان که نتایج ای مطالعه نشان داد، میانگین وزن بدن در
پایان دوره تیمار در بین گروه‌های مختلف، تغییر معنی‌داری را
نشان نداشت. این یافته با نتایج برخی از مطالعات مربوط به
این زمینه مطابقت دارد (۴۲، ۴۳)؛ علت کاهش وزن بدن در اثر
برخی ایالیده‌های زیست محیطی و سوم، کم شدن مصرف
غذای نتیجه بیش‌تری از می‌باشد (۴۴). بنابراین این احتمال
وجود دارد که این مقدار دوز بیسفنول A در این دوره زمانی در
حدی نبوده است که اثری بر وزن ریزه‌اش داشته باشد. همانطور
(Outer Transition protein) و (dense fiber protein) ODF1
(1) تاکه فعالیتی از دندره‌ای انتی‌اکسیدانتی در پیش
از جمله غلظت‌های دندره‌ای خودکار، غلظت‌های اکسیداسیون،
پاک‌کننده‌های سلولی و گل‌فیبری (5) سلول‌های جنسی را در برابر
اسیرپاموتوزن تحت تأثیر اثر ناپایدار خود قرار دهد.

همچنین با در نظر گرفتن ارتباطات کستره‌های که در
سطح پوستی‌سای، مولاک زین سلول‌های جنسی و سرطانی
در سراسر بدن اسیرپاموتوزن وجود دارد برای این‌که
بیماران با درمان که سلول‌های سرطانی شود
نیز اثرات عضلانی بر اسیرپاموتوزن دارد (۴۴). از اینرو می‌توان
گفت که در مطالعه حاضر کاهش غلظت‌های اسیرپاموتوزن و اسیرپاموتوزنی‌های غلظت‌های سرطانی در برابر
و کاهش غلظت سلول‌های سرطانی در اثر بیسفنول A باشد.

چنان که دانسته‌ای، رادیکال‌های آزاد باعث راه‌اندازی پروکائسیزیون لیپیدی در موقعیت‌های سرطانی و مالات
در انتهای بی‌کی در مصروفه‌های پروکائسیزیون استفاده
چرب غیر اشباع در سلول‌های می‌ باشد. سنجش میزان مالات
در انتهای بی‌کی به عوامل شاخصی برای انتقال دخالت
رادیکال‌های آزاد و استرس اکسیداسیون شناخته می‌شود (۴۳).

به همین جهت در راستای نتایج تحقیقات برون زرفا در
پژوهش حاضر نیز افزایش غلظت مالات در انتهای بی‌کی در می‌باشد.
از افزایش پروکائسیزیون لیپیدی در انت‌ولیون غلظت‌های فعال
اکسیدان (ROS) و کاهش سطوح آنزیم‌های اکسیداسیون (5) در
اثر تیمار با بیسفنول A در نظر گرفته شود.

چنان که نتایج ای مطالعه نشان داد، میانگین وزن بدن در
پایان دوره تیمار در بین گروه‌های مختلف، تغییر معنی‌داری را
نشان نداشت. این یافته با نتایج برخی از مطالعات مربوط به
این زمینه مطابقت دارد (۴۲، ۴۳)؛ علت کاهش وزن بدن در اثر
برخی ایالیده‌های زیست محیطی و سوم، کم شدن مصرف
غذای نتیجه بیش‌تری از می‌باشد (۴۴). بنابراین این احتمال
وجود دارد که این مقدار دوز بیسفنول A در این دوره زمانی در
حدی نبوده است که اثری بر وزن ریزه‌اش داشته باشد. همانطور
نتیجه‌گیری
نتایج ما نشان داد که بی‌پس‌فونل A به عنوان یک مخرب اندوکرینی موجب اسهال‌های بافتی و سولوی در بیمار یک می‌شود. این اکسیدات توانست اثرات نامتوانی بی‌پس‌فونل A بی‌پریشات بافت شناسی در جلد و عناوین سولوی و سولوی A و بی‌پس‌فونل E در گروه نیز زمان بی‌پس‌فونل A و E تعیین شد. این اکسیدات، می‌تواند در بای‌های مصرف بهبود روند اسپرماتوز و بی‌پریشات نامتوانی بی‌پس‌فونل A شود است. سپاس‌گزاری
این مقاله حاوی یافته‌هایی است که از طریق کارشناسی و در رشته زیست‌شناسی سولوی تکنیکی از دانشگاه علوم پایه دانشگاه اراک بود و با حمایت مالی حوزه معاونت حرفه‌پزشکی و فناوری دانشگاه اراک به انجام رسیده است. در ضمن از کمک‌های ارزشمند منابعی از امکان‌های سولوی تکنیکی دانشگاه اراک به حمایت در همه فاکتورهای این مقاله به اشتراک گذاشته شده است.
References:

24- Mandarim-de-Lacerda CA. Stereological tools in biomedical research. An Acad Bras Cienc 2003; 75(4): 469-86.

29- Dalgaard M, Pilegaard K, Ladefoged O. In utero exposure to diethylstilboestrol or 4- n-nonylphenol in rats: number of sertoli cells, diameter and length of seminiferous tubules estimated by stereological methods. Pharmaco Toxicol 2002; 90(2): 59–65.

31- Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products:
Protective role of vitamin E in preventing the adverse effects of bisphenol A on rat testis tissue: A stereological evaluation

Malek Soleimani Mehranjani†, Monireh Mahmoodi‡, Marziye Amjadi

Introduction: Bisphenol A (BPA) as an environmental pollutant has estrogenic effects and can induce oxidative stress in the testis tissue. The aim of the present study was to investigate the role of vitamin E (Vit E), as a strong antioxidant, on the adverse effect of BPA on adult rat testis tissue.

Methods: Male rats (220±15g) were divided into 4 groups (n=6/each): control, Bisphenol A (250 mg/kg/day), Bisphenol A+ Vit E (150 mg/kg/day) and Vit E and orally treated for 56 days. At the end of the treatment, the right testis was removed and after fixation, sectioning, tissue processing and staining with Heidenhain's Azan method was evaluated stereologically. The serum testosterone and malondialdehyde (MDA) levels were also measured. Data were analyzed using one way ANOVA and Tukey's test and the means were considered significantly different (P<0.05).

Results: A significant decrease in the total volume of testis, volume and diameter of seminiferous tubule and its height of the germinal epithelium and thickness of the basement membrane, number of spermatids, spermatocyte and sertoli cells, Serum testosterone levels and a significant increase in the serum MDA level were found in the Bisphenol A group compared to the control group. The above parameters were compensated to the control level in the Bisphenol A + Vit E group.

Conclusion: Vitamin E, as a strange antioxidant, could compensate many adverse the effects of Bisphenol A on the testis tissue, so it is suggested that it can be used as a potential supplement in case of BPA intoxication.

Keywords: Bisphenol A, Vitamin E, Stereology, Testis, Rat.

1Department of Biology, Faculty of Science, Arak University, Arak, Iran
2Department of Biology, Faculty of Science, Arak University, Arak, Iran
3Faculty of Science, Arak University, Arak, Iran
*Corresponding author: Tel: 09181617098, email: m-soleimani@araku.ac.ir