بررسی فعالیت آنزیم‌های آلکالین فسفاتاز، لاکنت دهیدرورنژا، ترانس آمینازها و تغییرات هیستوپاتولوژیک کبد بعد از مواجهه با اکسید نیکل و نانو‌دره اکسید نیکل در موس صحرایی

آبدین مرزبان۱، باقر سیدعلی‌بیور۲، منیزه میان آبادی۳، علی پور۴

چکیده
مقدمه: نیکل و ترکیبات نیکل بطور گسترده‌ای در صنعت، نانوپزشکی و رادیوتراپی استفاده می‌شود. با این حال، سمیت نانو‌دره نیکل و ترکیبات نیکل هنوز به طور کامل مشخص نیست. در این مطالعه، سمیت نانو‌دره اکسید نیکل و اکسید نیکل با استفاده از روشهای تشخیصی یافته‌های بیوشیمیایی و تغییرات هیستوپاتولوژیک کبد در موس مورد بررسی قرار گرفت.

روش بررسی: در این مطالعه تجربی، موس‌ها به صورت تصادفی به فستروک شده‌اند. نیکل داخلی (بربندگی یک جریه کنترل و شش جریه تیمار (سه جریه با نانو‌دره اکسید نیکل و سه جریه با اکسید نیکل) در غلظت‌های 10، 50 و 100 میلی گرم بر کیلوگرم وزن بدن تقسیم شدند. تزریق به صورت درون صافی به صورت هشت روز متوالی انجام شد. پس از یک ایفایان دوه روز تزریق خونی‌گیری از قلب موش‌ها انجام شد و فعالیت آنزیم‌های کبدی خون ایجاد گردید. سپس از کلیدکشکاف موش‌ها، بافت کبد جهت بررسی هیستوپاتولوژی روش همانوتکسیلین و انزیم‌های اکسید نیکل و SPSS نسخه 21 به روش آنالیز واریانس یک‌طرفه (آناو) و تست تعقیبی تک مرور تجزیه و تحلیل قرار گرفت.

نتیجه‌گیری: نتایج حاصل از این مطالعه نشان داد که میزان فعالیت آنزیم‌های لاکنت دهیدرورنژا، آسپارتات امینوتراپازرأز، آلین آمینوتراپازرأز و آلکالین فسفاتاز در جریه تیمار در مقایسه با جریه کنترل افزایش معنی‌داری داشته است (0.05). مطالعه آسیب‌شناسی طیفی از تغییرات هیستوپاتولوژیک از جمله آسیب‌شناسی سلول‌های آماسی، برخوی، و سبز از قبلاً بیان کرده. تغییرات هیستوپاتولوژیک کبد سمیت نانو‌دره اکسید نیکل و نانو‌دره اکسید نیکل را ناشناخته می‌کند.

واژه‌های کلیدی: اکسید نیکل، نانو‌دره اکسید نیکل، تست‌های بیوشیمیایی، هیستوپاتولوژیک، موس صحرایی

۱- گروه زیست شناسی، دانشکده علوم پایه، دانشگاه اسلامی کرمان.
۲- گروه زیست شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه اسلامی کرمان.
b.alipour81@gmail.com

* (پوششی سپری) تاریخ دریافت: 1396/10/15
تاریخ پذیرش: 1396/12/13
تاریخ انتشار: 1395/7/16
مقدمه

نیکل یک فلز سفید نورپردازی یا جالی با اکسید سطحی، هادی و هاتریتی به‌صورت ترکب با اکسید و سولفور با عنوان NICKEL و NICKEL در پوسته زمانی کشف شده است. راه و رود نیکل به بدن انسان از طریق هوا، آشامیدنی، آب خوردن گذاشتن سیگار است. ممکن است اثر تنش پوست با خاک با آلوئه به نیکل، مقداری نیکل وارد بدن انسان شود. بدن گوارشی این فلز به کنی انجام می‌شود اما استنشاق فیومهای نیکل موجب چربی آن می‌شود. مقدار نیکل در طبیعی سرپرست کم است. در صورتی که افزایش اسپزیا حاصل از استنشاق هوا به نیکل تغذیه کند، مقدار زیادی نیکل وارد بدن شود. مقدار این افزایش را می‌توان از سیری از زیادی نیکل در اتفاقات لاکسان اشاره کرد. در حال حاضر این بدان انسان در ابتدا اثرات فرمایشی مشاهده شده است. در برخی از اثرات فرمایشی مشاهده شده است.
آلین امینوتراTransferase (Alkaline Phosphatase) است که بافت‌های مختلف سراسر بدن از جمله کبد مغز استخوان می‌تواند در بندی‌های الکل (Alcohol Fatty Liver) بکار گیرد.

کبد نیز، یکی از مصرف‌کننده‌های این هورمون است که می‌تواند اختلالاتی نظیر تومور کبد و چربی بیماری‌هایی نظیر کبد گیری را نیز در برگیرد.

مکانیک ویراژ، 250 پسر به ترتیب می‌تواند به طور شدید سروکسپال داشته باشد. این علت برای توقف خونریزی روده‌ای است و می‌تواند به طور خاطر بالا Rode اما در بیماری حاد کبد می‌تواند به طور شدید سروکسپال داشته باشد...
موش‌ها، استفاده از موس‌های نازدا ویستار، محدوده سی-8 و تزریق درون صاقعی سلامت کامل موش‌ها و عدم استفاده پیش‌الزمان هرگونه کریکت豸ی سیمی‌پارا بیماری، معماری خروج از مطالعه شامل مشارکت هرگونه کریکت ظروف، خونفریزیت پس از تزریق درون صاقعی هر چند همان‌آزمایی، مورد بودن و عدم تغییر ویژگی‌آزمایش در شرایط کاملاً بکار آمد و رعایت شرایط استاندارد مطالعات اصول اخلاقی کار با حیوانات آزمایشگاهی در دانشگاه مازندران صورت گرفت.

تهیه نیکل از نانوهای اکسید نیکل

۱ گرفت. جهت بررسی بارامترهای بیوشیمیایی نمونه خون به مدت ۱۵ دقیقه و با سرعت ۳۰۰۰ دور در دقیقه سانتریفیژور شده و سرم آن جداسازی شد و برای نسنج انزیم‌های کبدی و بارامترهای بیوشیمیایی استفاده گردید. برای نسنج آسیب‌انگیزه، ترانسفراز (ALT)، آمیتوین‌ترانسفراز (AST)، انکل‌سان فسفاتاز (LDH) و لاکتاز گمی‌پودریت (ALP) و گلیکازی‌پاس‌پر از زیتون و توسع روش پیشنهادی کلرسن بین‌المللی شیمی‌بینی (IFCC) با کمک دستگاه انجام شد.

Roche, Cobas Mira, Swiss

این‌ال‌ایزیر

بررسی هیستوپاتولوژی

جهت بررسی هیستوپاتولوژی، موش‌ها با استفاده از کلروفرم بیهوش و کشته شدند. سپس کبد موش‌ها حضرت و پر از شستشو با محلول فیزیولوژی در فرمول ۱۰ درصد تبیین شدند. به منظور آگرگی پاتولوژی نمونه را به ترتیب در اقلیم ۱۰ درصد، ۲۰ درصد و ۴۰ درصد و مطلق قرار گرفت که به این عمل آب پاشیده کرده که در اکل ۱۰ درصد تبیین شدند. در ادامه نمونه در داخل محلول به نام گزیبی قرار گرفت که آن باید جایگزین الک شد. سپس در مرحله آگشته سازی (Infiltration)
دانه‌های هیستوپاتولوژی، به دلیل اینکه دانه‌های هیستوپاتولوژیک کیفی بودند، از آزمون‌های آماری تحلیلگری کروسکال ولیس برای بررسی وجود تفاوت بین گروه‌ها و از آزمون مان ویتین برای بررسی تفاوت بین هر کدام از گروه‌های تجربی با گروه کنترل استفاده شد. اختلاف بین گروه‌ها با 2±32 عدد بجستیه استفاده شده است.

نتایج
جهت انجام این مطالعه از نانوذره اکسید نیکل به ابعاد 200-100 نانومتر استفاده شد. به منظور مشاهده انداره و شکل نانوذرات از آلزیر میکروسکوپ الکترونی عبوری استفاده شد.
همان‌گونه که از تصویر 1 نیز بسیاری نانوذرات به شکل نسبتاً گریز و با نسبت متوسط نازدیک به یک تشكیل مشاهده شدند. اگرچه به نظر می‌رسد که ذرات کمی به هم جنبهده و به حالات کلیه‌ای در آمدم ولی اثری از جنده دانه‌ای بودن نانوذرات مشاهده نمی‌شود. همچنین متوسط انداره ذرات با توجه به انداره‌گیری قطر تقریباً 120 نانوذره در 2 عکس متفاوت برابر 23±2 نانومتر بوده است.

نمونه‌ها و همکاران

نمونه را در داخل پارافین مشابه قرار دادیم تا به داخل بافت نفوذ کند. پارافین در دماه انتظار جامد است و در حالت 50 درجه به صورت مذاب در می‌آید. در مرحله قابل‌گیری (Embedding) نمونه‌ها در صورتی شده با پارافین در این مرحله، در داخل قالب بر از پارافین مذاب قرار گرفت. ضمن انجام پارافین، نمونه‌ها نیز در داخل باقی‌مانده و آماده مقطعه‌گیری می‌شود. مقطعه‌گیری (Sectioning) نمونه‌های با قالب پارافین (Leitz 1512, Germany) به توسط دستگاهی به نام میکروسکوپ ضخامت پیکرون برای این‌ها به روش هم‌تکسیلین–‌اتوئین (H&E) رنگ‌آمیزی و با میکروسکوپ نوری (Olympus CX31, Japan) مورد ارزیابی صورت گرفت.

روش تجزیه و تحلیل آماری
پس از جمع‌آوری داده‌ها تجزیه و تحلیل با استفاده از نرم‌افزار آماری SPSS سنتسه ۲۱ انجام شد. برای بررسی وجود اختلاف بین گروه‌ها از آزمون آنانیز واریانس یک‌طرفه (ANOVA) و به دنبال آن از آزمون توکی استفاده شد. داده‌ها به صورت میانگین ± انحراف معیار گزارش و اختلاف بین گروه‌ها با p<0/05 معنی‌دار تلقی شده است. به منظور تحلیل (TEM)

شکل 1: تصویر نانوذره اکسید نیکل توسط میکروسکوپ الکترونی عبوری (TEM)
جهت بررسی میزان بلوره بودن نانوذرات اکسید نیکل، نوع
و فاز بلور از آنالیز XRD استفاده شده است که در نمونه‌ی 1
الکل اکسید نیکل بوده که با دقت
بسیار زیادی به کار استفاده‌اند آن به شماره یک ۴۰۷-۰۰۵ تثبیت
دارد. در واقع قله‌های ظاهر شده در زاویای [۲۰/۴۳۷، ۲۶/۲۷، ۲۸/۱۹، ۲۹/۲۸ و ۳۴/۳۷] یک
نیکل بودن نانوذرات مورد استفاده‌است.

در مطالعه حاضر سببیت نانوذرات اکسید نیکل و اکسید
نیکل بر وزن بدن موس میلیاری گرفته شد. تغییرات وزن
بنی موش نسبت به بعد از دوره تیمار تفاوت معنی‌داری را نشان
داد (p<۰/۰۵). ظاهر حیوانات در طول زمان تیمار طبیعی
بوده و علاوه بر این هیچ امری مربوط به نشان ندارد. در بررسی
انزیم‌های کلیه تغییرات مطالعه قابل ملاحظه‌ای در
نراد. آنالیز میزان LDH، ALT، AST میزان آنژیم‌های
آمری که با آزمون آنها نشان داد که واقعیت آلکالین سفتاز‌دان
گروه‌های مورد مطالعه افزایش معنی‌داری را نشان داد
۱۰۰ (p<۰/۰۵). بر اساس تفاوت الکلی مشاهده شد که
فعالیت آنژیم در گروه تجربی ۲ با کنترل (p<۰/۰۵).
گروه‌های
تجربی ۱ (۰/۰۵) (p<۰/۰۵).

درجه‌بندی علوم پزشکی و خدمات بهداشتی- درمانی شهید سدوقی پردیس

دوره ۲۵ شماره ۵ مداد ۱۳۴۸
نمودار ۲: بررسی تغییرات آنزیم ALP پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل و اکسید نیکل در موش صحرایی.
نامه‌ها به صورت میانگین‌گیری سنجش‌های میانگین داده شده است.
اختلاف در سطح کمتر از ۰/۰۵ معنی‌دار نیست.

نمودار ۳: بررسی تغییرات آنزیم AST پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل و اکسید نیکل در موش صحرایی.
نامه‌ها به صورت میانگین‌گیری سنجش‌های میانگین داده شده است.
اختلاف در سطح کمتر از ۰/۰۵ معنی‌دار نیست.

نمودار ۴: بررسی تغییرات آنزیم ALT پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل و اکسید نیکل در موش صحرایی.
نامه‌ها به صورت میانگین‌گیری سنجش‌های میانگین داده شده است.
اختلاف در سطح کمتر از ۰/۰۵ معنی‌دار نیست.
نمودار 3. بررسی تغییرات آنزیم ALT پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل واکسید نیکل در موس صحراپی نر.

شده است.

ناموذره	غلظت (میلی گرم بر کیلو گرم)	LDH
کنترل | 180 | 300
نانوذره اکسید نیکل 100 | 210 | 350
نانوذره اکسید نیکل 250 | 240 | 400
نانوذره اکسید نیکل 500 | 280 | 450

نمودار 5. بررسی تغییرات آنزیم LDH پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل واکسید نیکل در موس صحراپی نر.

تفاوت‌ها به صورت میانگین±انحراف معیار نشان داده شده و اختلاف در سطح کمتر از 0/05 (n=7) معنی‌دار تلقی شده است.

نتایج مطالعه هیستوپاتولوژی نشان داد که نانوذره اکسید نیکل واکسید نیکل با غلظت‌های مختلف بر روی کبد اثر گذاشت و باعث پرخوری، اینفیتیریشن سلول‌های آماس و درجاتی از سیروز شد (شکل 2). همانطور که در جدول 2 مشاهده می‌شود بر اساس آزمون آماری تایپرمنگ کروسکال باسیل، شدت تغییرات اینفیتیریشن سلول‌های آماس بافت کبد گروه کنترل و گروه‌های تجربی اختلاف معنی‌داری را نشان داد (p<0/01). نتایج آزمون آماری تایپرمنگ کروسکال باسیل نشان داد که اینفیتیریشن سلول‌های آماس با صورت میلیم در گروه تجربی 3 و 6 قابل مشاهده است که بر اساس آزمون آماری تایپرمنگ کروسکال باسیل این تغییرات معنی‌داری ندارد (p>0/01). از نظر انتخاب بالاتر نانوذره اکسید نیکل در گروه‌های تجربی 3 و 6 معنی‌داری ندارد (p>0/01). این نتایج نشان داد که با گروه کنترل و گروه‌های تجربی، بافت کبد در سطح کمتر از 1 درصد از میزان حسایسی کبود را نشان داد (p<0/01).

تجربی 3 و 5 بر اساس آزمون من-ویتپنی اختلاف معنی‌داری به ترتیب 0/02 و 0/01 نشان داد. بر اساس آزمون آماری تایپرمنگ کروسکال باسیل، شدت تغییرات سپرور شد و اختلاف معنی‌داری را نشان داد (جدول 1). ترتیب آبیشنانی بافت کبد نشان داد که در گروه تجربی 3 با صورت کم‌بیان مشاهده شد. بر اساس آزمون آماری تایپرمنگ کروسکال باسیل، شدت تغییرات مختلفی در گروه‌های تجربی و کنترل مشاهده شد.}

نوشته‌های فعالیت‌های الکترونی‌فیزیکی برای بازیافت پایداری انسانی، دسترنده، راهبردهای و ارائه خدمات بهداشتی-ریاضی و سرمایه‌سازی برای بهبود کیفیت زندگی و بهبود کارایی سیستم بهداشت و درمانی در کشور...

دوره 25 شماره 5 می‌رداد 1398

مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی پردیس
جدول ۱: مقایسه شدت تغییرات هیستوپاتولوژیک کبد بعد از مواجهه با غلظت‌های مختلف نانو‌های اسید تیتانیوم و اسید تیتانیوم

<table>
<thead>
<tr>
<th>آسیب‌های کبد</th>
<th>اینفیلتریشن سلول‌های آماسی</th>
<th>درجاتی از سیروز</th>
</tr>
</thead>
<tbody>
<tr>
<td>لاکنتین</td>
<td>++ + ++ ++</td>
<td>++ + ++ ++</td>
</tr>
<tr>
<td>نیک‌کریمه</td>
<td>++ + ++ ++</td>
<td>++ + ++ ++</td>
</tr>
<tr>
<td>کنترل</td>
<td>++ + ++ ++</td>
<td>++ + ++ ++</td>
</tr>
</tbody>
</table>

(++) غلظت 45 mg/kg
(++) غلظت 50 mg/kg
(•••) غلظت ۱۰ mg/kg

حداقل غلظت کنترل تا غلظت ۱۰ mg/kg به ترتیب به ترتیب ۱ تریب، تریب ۱ تریب نانو‌های اسید تیتانیوم و اسید تیتانیوم به ترتیب غلظت ۱۰ mg/kg

شکل ۲: بررسی تغییرات هیستوپاتولوژیک کبد بعد از مواجهه با غلظت‌های مختلف نانو‌های اسید تیتانیوم و اسید تیتانیوم
آی‌زایان و همسر

اینفیلترشن سلول‌های آماسی، نگیری ساختار فارماتیک کی‌دی و آنزیم‌های ALT و AST در جریان همکاران (2014) بعد از تزریق جلدهای نازک به موش مشاهده شد که با نتایج ژوهر ما همخوانی داشت (19).

علاوه‌البیری، و است. ALT و AST قبل از تزریق جلدهای ناب‌گیتکنیک به موش در مطالعه تأثیر آن‌کی‌دی و نازک‌های اسکیدنیک در غلط‌های (25) و ۵۰ میلی گرم در گروه‌ی BR (برای مشاهده آنزیم‌های سمور بررسی گرفته) بر اساس نتایج بیوشیمیایی این مطالعه، مواجهه موش‌های صحرایی با غلط‌های مختلف آن‌کی‌دی و نازک‌های اسکیدنیک در مقایسه با گروه کنترل، به خصوص در غلطه‌بی‌الا. موجب افزایش ALP و AST، موجب مقدار آنزیم‌های سموری توزیع گرفته‌اند.

الف: طراحی ژوهر و است. ALT و AST قبل از تزریق جلدهای ناب‌گیتکنیک به موش در جریان همکاران (2014) بعد از تزریق جلدهای ناب‌گیتکنیک به موش مشاهده شد که با نتایج ژوهر ما همخوانی داشت (19).

دیگه، نشان داد اکسید DNA نیکل با تولید ژوهر و است. ALT و AST قبل از تزریق جلدهای ناب‌گیتکنیک به موش در جریان همکاران (2014) بعد از تزریق جلدهای ناب‌گیتکنیک به موش مشاهده شد که با نتایج ژوهر ما همخوانی داشت (19).

ابزار بسیار مفیدی در مطالعات اسکید آن‌زایی ممکن است نیکل و است. ALT کد اختصاصی یک سلول حاوی قرار گرفت در معرض اکسید نیکل و نازک‌های اسکیدنیک در سطح‌های بالا. موضعسازی، می‌گردد. بنابراین نیکل نیکل در این مطالعه، به علت اثر تخریب نانو ذرات اکسید نیکل بر سلول‌های کی‌دی و هم‌اکسید نسخه‌های صفاتی نیز باعث نورهای غلط‌های بر سلول‌های نیکل است. ALT. این از اکسیدی مگرد. در راستای تایید نتایج پژوهش، مطالعات انجام شده با وسیله آنتیژن دیگر افزایش قابل توجهی در فعالیت آنزیم‌های ALT و AST در جریان همکاران (2014) بعد از تزریق جلدهای ناب‌گیتکنیک به موش در جریان همکاران (2014) بعد از تزریق جلدهای ناب‌گیتکنیک به موش مشاهده شد که با نتایج ژوهر ما همخوانی داشت (19).

نتیجه‌گیری

جهت اطمینان از اینکه موردات برای موجودات و محیط به‌طور مثبت سمت‌گذاری با توکر کاهش یابد. دستیابی به این هدف نیازمند مطالعه بیشتر است که بر فاکتورهای
سمیت نانوذرات اکسیدنیزیک سوند. نتایج نشان داد هم‌اکسید نیکل و نانو در هم اکسید نیکل با تجمع و اثرات سیم خود به ویژه در دوره‌های بالا منجر به اینفیلتراش سلول‌های آماسی، پرخونی و درجاتی از سروری می‌شوند. فعالیت آنزیم‌های سرمی با انسجامی پارانشی‌کننده‌ای در ارتباط است. این آسیب‌ها موجب آزادسازی آنزیم‌های کبدی از مواد اکسیدی در مناطق کبدی و سیتوژولیسیس‌ها و فاقدی از ماهیت این آنزیم‌ها به خون نمی‌شود و فعالیت سرمی آن‌ها را ازایش می‌دهد. افزایش فعالیت آنزیم‌های کبدی در این مطالعه نشان دهند است، بنابراین نیاز‌های انسجامی است.

References:

Investigation of the Enzyme activities of Alkaline Phosphatase, Lactate Dehydrogenase, Transaminase and Histopathological Changes of Liver after Exposure to NiO and NiO Nanoparticles in Rats

Aidin Marzban¹, Bagher Seyedalipour*,² Manijeh Mianabadi⁴, Ali Travati⁴

¹, ³ Department of Biology, Faculty of Basic Sciences, Golestan University, Gorgan, Iran
², ⁴ Department of Cellular and Molecular Biology, University of Mazandaran, Babolsar, Iran

Received: 3 Apr 2017 Accepted: 6 Jul 2017

Abstract

Introduction: Nickel (Ni) and nickel compounds are widely used in industry, radiotherapy and nanomedicine. However, the toxicity of NiO nanoparticles is yet to be fully elucidated. In this study, we evaluated the toxicity of NiO and NiO nanoparticles (NiONPs) using basic medical diagnostic tools, such as biochemical tests and histopathological changes of liver in rats.

Methods: In this experimental study, 49 male rats were divided randomly into seven groups (n=7), including one control group and six experimental groups (three experimental groups received NiONPs and three experimental groups received NiO intraperitoneally) with doses of 10, 25 and 50 mg/kg for 8 days. After 8 days, blood samples were collected from heart and liver enzyme activity assay was performed on serum sample. Liver issue for histopathological evaluation were stained with hematoxylin and eosin. Data were analyzed using ANOVA and Tukey test with SPSS21 software at significant level of P<0.05.

Results: The results showed that enzyme activity of AST, ALT, ALP and LDH in different doses NiO NPs and NiO increased in compared to control group (p<0.05). Histopathological study of liver following intraperitoneal (IP) administration of NiONPs and NiO showed pathological changes, including congestion, Cirrhosis and inflammatory cell infiltration compared to control group.

Conclusion: The results of this study demonstrate that exposure to different doses of NiONPs and NiO can induce different degrees of damage in a dose dependent manner. Thus, increasing level of liver enzymes and histopathological changes confirmed NiONPs and NiO toxicity.

Keywords: NiO Nanoparticles, Nickel Oxide, Biochemical Tests, Histopathological, Rat

This paper should be cited as:

*Corresponding author: Tel: 01135302405 , email: b.alipour81@gmail.com