بررسی فعالیت آنزیم‌های آلکالین فسفاتاز، لاکتات دهیدروژنază، ترانس آمینازها و تغییرات هیستوپاتولوژیک کبد بعد از مواجهه با اکسید نیکل و نانوزره اکسید نیکل در موس صحرایی

آیدین مرزبان۱، باقر سید علی‌پور۲، منیزه میان آبادی۳، علی تراوی۴

چکیده

مقدمه: نیکل و ترکیب‌های نیکل بطور گسترده‌ای در صنعت، نانوپویشکی و رادیوتراپی استفاده می‌شود. با این حال، سمیت نانوزره نیکل و ترکیب‌های نیکل هنوز به طور کاملاً مشخص نیست. در این مطالعه، سمیت نانوزره اکسید نیکل و اکسید نیکل با استفاده از روشن‌های تشخیصی پزشکی همانند تست‌های بیوشیمیایی و تغییرات هیستوپاتولوژیک کبد در موس مورد بررسی قرار گرفت.

روش بررسی: در این مطالعه تجربی، 49 موش صحرایی نر به صورت تصادفی به هفت گروه شامل یک گروه کنترل و شش گروه تیمار (سه گروه با نانوزره اکسید نیکل و سه گروه با اکسید نیکل) در گل‌های 10, 25 و 30 میلی‌گرم بر کیلوگرم وزن بدن تزریق شدند. تزریق به صورت درون مثانی به دو هفته رو به رو و در زمان انجام شد. پس از یک هفته فاصله مورد نظر، پس از کالبدکشافی موش‌ها، بلافاصله جهت بررسی هیستوپاتولوژی با روش همایونکسیلین و آنیوبرنگنِد می‌شود. داده‌ها با نرم‌افزار SPSS نسخه 11 به روش آنالیز واریانس یک‌طرفه (آناویا) و تست معیاری تکرار تجزیه و تحلیل قرار گرفت.

نتیجه‌گیری: با پایگاه نشان داد که میزان فعالیت آنزیم‌های لاکتات دهیدروژنază، آسیاب‌های آمیناتروفساز، آلیات آمیناتروفساز و آلکالین فسفاتاز در گروه تیمار در مقایسه با گروه کنترل افزایش معنی‌داری داشته است (p<0.05). مطالعه آسیب‌شناسی طیفی از تغییرات هیستوپاتولوژیک از جمله اینفیلتراسیون سلول‌های آماسی، پرخوی و سپرها را در پان‌کی نشان داد.

واژه‌های کلیدی: اکسید نیکل، نانوزره اکسید نیکل، تست‌های بیوشیمیایی، هیستوپاتولوژیک، موش صحرایی

۱- گروه ریست استاد، ۲- دانشکده علوم پایه، ۳- دانشگاه اسلامولیه، ۴- دانشگاه علوم پایه، دانشگاه اسلامولیه، بابل

b.alipour81@gmail.com

تاریخ دریافت: 1396/1/12
تاریخ پذیرش: 1396/3/15

*پویشده مسئول: نظر: ۵، نظر: ۳۰۲۰۱۳۵۳۲۰۰۱۰۰۱۳۵۳۲۰۰۱۰۰۱۳۵۳۲۰۰۱۰۰
نیکل یک فلز شفافی ترواحی با خالی بالا، خاست، هادی و دارای قابلیت تغییر حالت است. نیکل اکسید با صورت ترکیب با اکسیژن و سولف قرار دارد و اکسید و سولف‌خشنده‌ای را در پوسته زمین تشکیل می‌دهد. کشف نیکل برابر هزاره ورود نیکل به بدن انسان از طریق هوای آشامیدنی اب، خوردن غذا و کاشتن سیگار است. ممکن است بر اثر تهاجم دیگر با خاک یا آب آباده به نیکل مقادیر نیکل وارد بدن انسان شود. جدی گزارشی این فلز به کننده انجام می‌شود. اما استنشاق هوایی نیکل موجب حساسیت جذب آن می‌شود. مقادیر نیکل در طبقع بسیار کم است. در صورتی که آزاد در سبزه‌های حلال از مناطق آباده به نیکل تغذیه کند، مقادیر زیادی نیکل وارد بدن داشته می‌شود. مقدار اندازه‌ی نیکل برای انسان ضروری است اما اگر مقدار آن افزایش یابد، برای سلامت انسان خطدار است. در نتیجه از تحقیقات گزارش‌های این نفوذ ذرات نیکل به پوست منجر به حساسیت به نیکل و همچنین تنفس ذرات نیکل منجر به ایجاد التهاب و آسیب به پوست (1).}

نیکل شناسی می‌شنند به سرطان ریه سرطان بینی سرطان حنجره و سرطان پروریتزا از افزایش می‌دهد. پس از یکنفر در معرض گزار نیکل قرار گرفت، دچار کسالت و سرگیجه می‌شود. آب آبادن به پوست مشکلات تنفسی، کاهش توانایی تولید مثل، آسیا و برخورداری مزمن حساسیت‌هایی از قبل قرار پوست (به خصوص هنگام استفاده از جوهرات) و نارسایی خواب از اثرات نیکل، نیکل در همه جای بی‌طبعی و وجود دارد و مواجهه جمعیت‌های عمومی عمدتاً از طریق سبک‌های آب و گذا است. اما میزان نیکل در بدن آنها کم است که نظر سیستم‌شناسی کم اهمیت است. عده‌هایی خطر مواجهه با نیکل در کارگری‌ها ثابت کرد که در مشاغل جنگ استخراج سیب، صنایع ذوب، اکسید ورودی و چوب‌سازی مانند کارخانه، بازرگی یا کارگران مشغول با کار، نیکل به عنوان می‌شود که اثر آن به خواص، و پوست به استفاده در جوامع انسانی است. از مهم‌ترین علل مواجهه با نیکل می‌توان به درمانی اشاره کرده که در 20 تا 30 درصد جمعیت عمومی مشاهده می‌شود. گاهی که آن می‌توان ناشی از مواجهه پوستی مدت‌دار می‌شود. مجله دانشگاه علوم پزشکی و خدمات بهداشتی – درمانی شهید صدوقی پردیس
این لیست از عواملی است که می‌تواند سطح ALP را در خون و سلول‌ها را افزایش دهد:

- آلкалین فسفاتاز (Alkaline Phosphatase, ALP)
- آنزیم‌ها
- آلبالین

در حیوانات مختلف سارس بدن از جمله کبد، مغز استخوان، کلیه، لک و روده‌بندی می‌تواند سطح ALP را در بدن افزایش دهد.
موضعها. استفاده از موش صحرایی زاد و ویستار، محدوده سنی ۷-۸ گفته و محدوده وزنی ۷۰-۱۰۰ گرم، استفاده از روش تزریق درون صفاقی سلامت کامل موشها و عدم استفاده بیشتر از هرگونه ترشحات شیمیایی بود. معاوضه خروج از مطالعه شامل مشاهده هرگونه بیماری، عفونت یا التهاب در هنگام آزمایش، موت بودن و عدم توانایی موش و سنی موش با مطالعه حاضر بود. پژوهش حاضر در شرایط کاملی یکسان و رعایت شرایط استاندارد مطلق اختلاف کار با حیوانات آزمایشگاهی در دانشگاه مازندران صورت گرفت.

تهیه نیکل و نانوژر اکسید نیکل

مورد نظر اکسید نیکل و نانوژر اکسید نیکل به سیله نرمال سالین تهیه شد. از طریق مقداری مور میزان اکسید نیکل و اکسید نیکل به مقداری که موش تزریق خواهد شد، بر حسب میلی گرم وزن شده و در قهوه میکروتوبی با مقدار معینی از نرمال سالین مخلوط شد. سیس، سیس و سیس (عفونت) به مدت چند دقیقه پرتکس شد تا محتوای آن به خوبی حل شود. سیس در شرایط استریل یکس، سیس و سیس محلول سیسیک از اکسید نیکل و نانوژر اکسیدنیکل با تغذیه مختلف به صورت داخل صافی به وسیله تزریق گردید.

گروه‌های مطالعه و تیم‌بندی حیوانات

جدی بررسی هیپوپاتولوژی یک گروه نیکل و یک گروه کنترل

دوره ۴۵، شماره ۵، مرداد ۱۳۹۸

مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید سبزواری
نمونه‌ها در داخل پارافین مناسب قرار دادیم تا به داخل بافت نفوذ کند. پارافین در دمای انگشته مایع در حرارت 50 درجه سانتی‌گراد در می‌آید. در مرحله قابل‌گیری (Embedding) نمونه‌ها به‌طور آشکاری شده با پارافین در این مرحله در داخل قالب بر از پارافین مناسب قرار گرفت. ضمن انجام پارافین، نمونه‌ها نیز در داخل باقی‌مانده و آماده مقاطع‌گیری خروج (Sectioning) می‌شود. مقاطع‌گیری توسط دستگاهی به نام میکروکسوب (H&E) همان‌کسیلین- انوژن (H&E) را گرفته و با میکروکسوب نوری (Olympus CX31, Japan) مورد ارزیابی صورت گرفت.

روش تجزیه و تحلیل آماری پس از جمع‌آوری داده‌ها تجزیه و تحلیل با استفاده از نرم‌افزار آماری SPSS نسخه 21 انجام شد. برای بررسی وجود اختلاف بین گروه‌ها از آزمون آنانیز واریانس یکطرفه (ANOVA) به دنبال آن از آزمون توکی استفاده شد. داده‌ها به صورت میانگین±انحراف معیار گزارش و اختلاف بین گروه‌ها با p<0.05 معنی‌دار تلقی شده است. به منظور تحلیل (TEM) شکل 1. تصویر نانوذره اکسید نیکل توسط میکروکسوب الکترونی عبوری
جهت بررسی میزان بلوری بودن نانوذرات آکسید نیکل، نوع و فاز بلور از آنالیز XRD استفاده شده است که در نمودار 1 نشان داده شده است. نتایج به دست آمده از آنالیز پراش اشعه ایکس نشان دهنده تکثیر فاز آکسید نیکل بوده که با دقت بسیار زیادی با کاراکتر استندارد آن به شماره 83–0860 تطبیق دارد. در واقع قله‌های ظاهر شده در زاویات 3/5/5، 6/2/7 و 7/4/3 مربوط به پراشی از صفحات بلوری نانوذرات آکسید نیکل است که تزیب بودن قله‌ها به بخار بلوری و بودن نانوذرات مورد استفاده از مطالعه حاضر سمیت نانوذرات آکسید نیکل و آکسید نیکل بر وزن بدن موش مورد ارزیابی قرار گرفت. تغییرات وزن بدن موش قبل و بعد از دو روز نیروگذاری را نشان داد (p<0.05). ظاهر حیوانات در طول زمان نیروگذاری طبیعی بوده و علاوه بر این هیچ مرگ و میری مشاهده نشد. در بررسی آنالیزهای کبدی نتایج این مطالعه تغییرات قابل ملاحظه‌ای را در میزان LDH، ALT، AST سنجید. در نتایج نشان داد، آنالیز اقراص گرفتگی تمام گروه‌های تجربی از نظر LDH، ALT و AST نسبت به هر گروه کنترل با اختلاف معنی‌داری مشاهده نشد. همچنین بررسی آنالیزهای کبدی نتایج دقیقی را نشان داد. پس از نیروگذاری در تمام گروه‌های تجربی در نتایج منجر به اختلاف معنی‌داری نشان داد (p<0.01). پس از نیروگذاری در تمام گروه‌های تجربی در نتایج منجر به اختلاف معنی‌داری نشان داد (p<0.01).
نمونه ۲: بررسی تغییرات آنزیم ALP پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل و اکسید نیکل در موش صحرایی.

یافته‌ها به صورت میانگین‌های انحراف معیار نشان داده شده‌اند

شده است.

$\text{ اختلاف در سطح کمتر از } 0.05 \text{ معنی‌دار نشود.}$

نمونه ۳: بررسی تغییرات آنزیم AST پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل و اکسید نیکل در موش صحرایی.

یافته‌ها به صورت میانگین‌های انحراف معیار نشان داده شده‌اند

شده است.

$\text{ اختلاف در سطح کمتر از } 0.05 \text{ معنی‌دار نشود.}$
نمودار 4. بررسی تغییرات آنزیم ALT پس از تیمارسازی با غلظت های مختلف نانوذره اکسید نیکل و اکسید نیکل در موش صحرایی.

اینها به صورت میانگین ± انحراف معیار نشان داده شده‌اند. اختلاف در سطح کمتر از 0/05 می‌تواند تلقی شده است.

نمودار 5. بررسی تغییرات آنزیم LDH پس از تیمارسازی با غلظت‌های مختلف نانوذره اکسید نیکل و اکسید نیکل در موش صحرایی.

نتایج مطالعه حیاتیولوژی نشان داد که نانوذره اکسید نیکل و اکسید نیکل با غلظت‌های مختلف بر روی کبد اثر گذاشت و باعث پرخونی، اینفیلترین سلول‌های آماس و درجاتی از سیروز شد (شکل 2). همانطوری که در جدول یک مشاهده می‌شود بر اساس آزمون آماری تیمارسازی کروسکال ویلی، شدت تغییرات اینفیلترین سلول‌های آماس به‌کم‌بین گروه کنترل و گروه‌های تجربی اختلاف معینی داری را نشان داد (p<0/01).

نتایج آبی‌دانوش بررسی‌های پیش‌گیری و اینفیلترین سلول‌های آماس به صورت ملایم در گروه تجربی 3 و 6 قابل مشاهده است که بر اساس (Moderate) آزمون من‌بتیابی این تغییرات در گروه تجربی 3 و 6 با گروه کنترل معنی‌دار است (p<0/01).

نتایج این تغییرات در بقیه گروه تجربی به صورت خفیف (Mild) مشاهده شد که با گروه کنترل اختلاف معنی‌داری نشان داد. بررسی آماری اسپیسی اینفیلترین سلول‌های آماس به کم‌بین گروه تجربی 6 با گروه کنترل از نظر آماری اختلاف معنی‌داری یافت.

جمعه دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد

دوره ۲۵ شماره ۵ مهر ماه ۱۳۹۶
جدول 1: مقایسه شدت تغییرات هیستوپاتولوژیک کبد بعد از مواجهه با غلظت‌های مختلف نانودره آکسید نیکل و آکسید نیکل کنترل

<table>
<thead>
<tr>
<th>آسیب‌های کبد</th>
<th>انفیلترین سولو‌های آماسی</th>
<th>در جنگل از سیروز</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ +</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+ +</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+ +</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+ +</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Exiting rate of NiO (mg/kg) 25، 50، 75، 100 کنترل (A) (ب) (C) (D) گروه تیمار H&E، انفیلترین سولو‌های آماسی، برگشته‌های B، A، C، D، E، F، G، H

شکل 2: بررسی تغییرات هیستوپاتولوژیک کبد بعد از مواجهه با غلظت‌های مختلف نانودره آکسید نیکل و آکسید نیکل کنترل

درجه 2: شماره 5، مرجان 1394

مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد

Downloaded from jssu.ssu.ac.ir at 4:50 IRST on Wednesday March 18th 2020
بحث

امروهه از فناوری ناوه به عنوان یک عامل تأثیرگذار بر علم و صنعت بد می‌شود. با توجه به سمت بلوغ آنها، اثرات مضر نانوپلیزیک طبیعی مورد بررسی قرار گرفته است. این صنف نانوپلیزیک از جمله نقشی‌های برتری است که مصرف این نانوپلیزیک را با کالش‌های زیادی مواجه کرده است. عوارض جانبی و احتمالی نانوپلیزیک با تردد در مصرف آن شده است. از جمله تاثیرات عمداًی که نانوپلیزیک در بدن می‌تواند داشته باشد تأثیر آن کم و متواضعی است. این مطالعات تا حدی که عملکرد نانوپلیزیک به وسیله کبد و طحال جذب شدند و مقدار کمی بیش از وسیله کبدی می‌گرفت.

نتایج آزمایشاتی بیان کرد در گروه‌های نامه با غلطه‌های 10 و 25 میلی‌گرم بر کیلوگرم بردن بدن اکسید نیکل و نانوپلیزیک اکسید نیکل، طیفی از تقییات هیستوپاتویونولوژیک از این انفیلترشون سلول‌های آسیب آوری و درجی در سیریزون ناشان داد. سیریزون کبدی تا اندازه‌ای شدید کبد با طبیعی از نمودهای بالینی مشخص هرane است که درنیچه وارد آمدن آسیب زیادی به این اندازه ایده می‌شود. به طوریکه پاتوژنیسم بید باعث شده زیان‌آمیز قابلیت یاب کم ناشان می‌گیرد. دو می‌هند و این پلاکت‌های ناشی از به روش‌های (نکروف) سلول‌های کبدی، تغییر شکل بسته و اندام نیز پاتوژنیسم بالینی را پاتوژنیسم بالاینده کبد هستند. این روست پاتوژنیک یک مشترک شناخت با انتقال به سپاری از آسیب‌های کبدی نزمن است. نانوپلیزیک اکسید نیکل می‌تواند تغییرات و آسیب‌های مختلف شامل ادام سلول، انفیلترشون لنفوسیت و نتوتروفیل، نابیندی بین سینوس کبدی و تکوز فوکال و کانوین را در کبد می‌تواند باعث افزایش تریپ‌پاتولوژیک توتیپ و هیستوپاتویونولوژیک سلول‌های کبدی باعث می‌گردد (15). مطالعه حاضر درجی در نمود گزارش شد (15).

در بخش دوم فعالیت آزمایش آکادمیایی در همدان و پروردگار

دوره 25 شماره 5 مهر 1398

جله نامه‌ها علم پزشکی و خدمات بهداشتی - درمانی شهید سعیدی پرید
انفیلتراتس سلول‌های آماسی نسبت به ترشیزی کایدی و ALP و AST، ALT گرفته شدند.

مطالعات کاوایی‌ی (202) و همکاران نشان داد اکسید نیکل با تولید گونه‌های واکنش‌آمیز باعث آسیب به DNA در ری موس چربی‌های می‌شود. مطالعات نشان داد یک مولوی به DNA و واکنش به آسیب نیکل به جمله غیر فعالیت DNA می‌شود (۲۴). مکلیسیسم‌گر آسیب اکسید نیکل به صورت غیر مستقیم در اثر التهاب و یا خاص معمول راکدیک‌های اکسید در روندهای سلول‌های فاگوسیت‌های مانند نوترفیک‌ها و ماکروفلاژها گسترش می‌یابد. در اثر استرس اکسیداناتی، راکدیک‌های ازدای به حمله به غیر فعالیت سلول سبب اکسیدانی‌سازی لیپیدی می‌شود. سپس یک مولوی به هضم غیر فعالیت سلولی و اقاقیک تکرر در سلول‌های پارانتیزیک کایدی می‌شود. با این حال، سلول‌های کایدی موجب آسیب‌آمیز اکسیدانی کایدی و راه‌پیمایی این اکسید به خون و درنتیجه بعث فعالیت سلولی انجام می‌شود. بر اساس توضیحات ذکرشده، با او اسپیس اکسیدانی باعث آسیب به DNA می‌شود. همواره ترکیبی نیکل به طور غیر مستقیم باعث آسیب از طریق التهاب می‌شود و البته باعث آسیب به طور مستقیم باعث آسیب به DNA از طریق تنش آب‌کسینه می‌شود. نباید در پنکی نیکل از طریق واکنش‌های مانند واکنش فنون و خشونات سایر عوامل آنتی اکسیدانی باعث آسیب می‌گردد (۲۴).

نتیجه‌گیری

جهت اطمینان از انکی ناتوانیار برای وجود مراتع و محیط بی‌خطر است، سمتی یادتا مقدار انداز کاهش یابد. دستیابی به این هدف نیازمند مطالعه به‌پیش‌تر است که بر فاکتورهای

و طحال به عنوان فیبرلار برای خون عمل می‌کند و ضمایم با متابولیز درون گروهی گرینی‌شناسی از طریق واکنش‌های متعدد و آسیب‌پذیری آن باعث آسیب‌پذیری کمتر بدن می‌شود (۱۹). در مطالعه‌های تاکری اکسید نیکل و ناتوانیار اکسید، در غلظت‌های (۰.۱، ۰.۵ و ۱۰۰ میلی گرم پیکلورگ) بر میزان فعالیت آنزیم‌های سرم یا در بررسی قرار گرفته است. بنابراین پیشنهادی این مطالعه با غلظت‌های مختلف اکسید نیکل و ناتوانیار اکسید نیکل و مقایسه با گروه کنترل، به خصوص در غلظت بالا موجب افزایش می‌شود.

الکل، ALP، AST و ALT در مقدار اکسید سرمی و بیشتر از آن، غلظت‌های اکسید نیکل و ناتوانیار اکسید نیکل در بالا موجب افزایش می‌شود.

لیموزین، در مراحل اولیه و زمان‌های نخست اکسید نیکل و ناتوانیار اکسید نیکل در بالا موجب افزایش می‌شود.

کلمه دانشگاه علوم پزشکی و خدمات بهداشتی درمانی هشتم دوره بر

دوره ۲۵، شماره ۵، مرداد ۱۳۹۶

مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی هشتم دوره بر
سمند ناوتزرات اکسیدفلزیک منتظر شوند. نتایج ما نشان داد هم اکسید نیکل و نانو دره اکسید نیکل با تجمع و اثرات سرم خود به ویژه در دوزه‌های بالا منجر به اینفتیشیشن سلول‌های آماسی، پرخونه و درجاتی از سبزه‌ریزی می‌شوند. فعالیت آزمایشی سرمی با استفاده از پارانشی کبد در ارتباط است. این آسباب‌ها موجب آزادسازی انسجام کبدی از مواضعان در میونکندی و سیتوولیاکیوستیک و زاویه‌گردی این آزیمیها به خون شده و فعالیت سرمی آنها را افزایش می‌دهند. افزایش فعالیت آزیمی‌های کبدی در این مطالعه نشان دهنده آسیب کبدی است.

References:

Investigation of the Enzyme activities of Alkaline Phosphatase, Lactate Dehydrogenase, Transaminase and Histopathological Changes of Liver after Exposure to NiO and NiO Nanoparticles in Rats

Aidin Marzban 1, Bagher Seyedalipour*2, Manijeh Mianabadi 3, Ali Travati 4

1, 3 Department of Biology, Faculty of Basic Sciences, Golestan University, Gorgan, Iran
2, 4 Department of Cellular and Molecular Biology, University of Mazandaran, Babolsar, Iran

Received: 3 Apr 2017 Accepted: 6 Jul 2017

Abstract

Introduction: Nickel (Ni) and nickel compounds are widely used in industry, radiotherapy and nanomedicine. However, the toxicity of NiO nanoparticles is yet to be fully elucidated. In this study, we evaluated the toxicity of NiO and NiO nanoparticles (NiONPs) using basic medical diagnostic tools, such as biochemical tests and histopathological changes of liver in rats.

Methods: In this experimental study, 49 male rats were divided randomly into seven groups (n=7), including one control group and six experimental groups (three experimental groups received NiONPs and three experimental groups received NiO intraperitoneally) with doses of 10, 25 and 50 mg/kg for 8 days. After 8 days, blood samples were collected from heart and liver enzyme activity assay was performed on serum sample. Liver issue for histopathological evaluation were stained with hematoxylin and eosin. Data were analyzed using ANOVA and Tukey test with SPSS21 software at significant level of P<0.05.

Results: The results showed that enzyme activity of AST, ALT, ALP and LDH in different doses NiO NPs and NiO increased in compared to control group (p<0.05). Histopathological study of liver following intraperitoneal (IP) administration of NiONPs and NiO showed pathological changes, including congestion, Cirrhosis and inflammatory cell infiltration compared to control group.

Conclusion: The results of this study demonstrate that exposure to different doses of NiONPs and NiO can induce different degrees of damage in a dose dependent manner. Thus, increasing level of liver enzymes and histopathological changes confirmed NiONPs and NiO toxicity.

Keywords: NiO Nanoparticles, Nickel Oxide, Biochemical Tests, Histopathological, Rat

This paper should be cited as:

*Corresponding author: Tel: 01135302405 , email: b.alipour81@gmail.com