همسانه سازی، بیان و ارژیابی عملکرد پروتئین شبه الاستیه
پروتئین نوین در مهندسی پزشکی
ندا رضیابی نسب‌1، مهدی زین الدینی2، علی رضا سعیدی نیا3

چکیده
مقدمه: پروتئین شبه الاستیه با ELP یک پلیمر زیستی مصنوعی شامل توالی‌های تکراری از پنتا پریتئین X (VPGXG) می‌تواند در استفاده‌ای به‌صورت غیر از پروتئین باشد، این پروتئین بیان پدید و آشکار دمایی است که دارای یک فاز انتقالی برگشت‌پذیر است.
در دمای زیر دمای انتقالی (Tı)، مولکول ELP به شکل فضایی باز شده در مهاجرت و بعضاً در محیط‌های آبی به‌صورت محلول در می‌آید؛ اما وقتی دما بیان تغییر و افزایش می‌یابد ELP به‌صورت غیر محلولی و شبه آگریکه از محلول خارج می‌شود.
هدف مطالعه اخیر، همسانه سازی، بیان و ارژیابی فعالیت ELP60 بر مبنای Tı است.

رش بررسی: این تحقیق با استفاده از روش‌های همسانه‌سازی HSA شدن در سیستم pBluescript (150 بازی) سنتز و درون پلاسمید ELP60 (90 بازی) با استفاده از روش تکثیف‌های ELP60 و (RDL) تولید شد. در نهایت ELP60 درون پلاسمید PET25 تغییر یافته‌بیان همسانه‌سازی شد.

تیپ ELP60 بر مبنای Tı و انجام چرخه انتقالی مکوس به کمک ELP60 تولید شد.

نتایج: نتایج نشان داد سازه بیانی ELP60 در حدود 90 درصد به میراث و بدون نیاز به سنگر گروه‌گرایی تولید شد.

نتیجه‌گیری: از پروتئین نوین مولتی‌تولیدی می‌توان در زمینه‌های خالصسازی سازه و سریع پروتئین‌های دارویی نوترگی، داروسازی، هوموسنت و مهندسی بافت استفاده نمود.

واژه‌های کلیدی: همسانه‌سازی، بیان پریتئین، تخلیص، انتقالی تولیدی، تولیدی شده.

1- کارشناس ارشد بیوتکنولوژی مولکولی، گروه مهندسی زیستی، پژوهشگاه علوم و فناوری زیستی دانشگاه صنعتی مکل اشت. تهران
2- دانشیار، گروه مهندسی زیستی، پژوهشگاه علوم و فناوری زیستی دانشگاه صنعتی مکل اشت. تهران
3- استاد، گروه مهندسی زیستی یگوهشگاه علوم و فناوری زیستی دانشگاه صنعتی مکل اشت. تهران
zeinoddini52@mut.ac.ir

تاریخ پذیرش: 1396/2/15
تاریخ دریافت: 1397/1/8
مقامه
پیشرفت روزافزون فناوری زیستی و فناوری نانو و کاربردهای وسیع آن در بیشتری، داروسازی، سبب نیاز به مواد زیستی جدید با کارایی بالا شده است. امرزود تولید موادی که قابلیت خود分化 و پایش دهی به نفع شرایط محیطی داشته باشند از اهمیت بسزایی برخوردار است. در این مقاله نشان داده شد که بدل ترین نوآوری در زمینه مولکول‌های زیستی پرتهز است. در رویکرد مبتنی روی واکنش ایمنی موکول‌های زیستی جدید به‌کمک عضوی در اکتیون پلمرهای خودساختاری یک محیط و نیز ویژگی‌های مکانیکی به منظور استفاده و کاربرد مواد تغذیه و بهبود روشی برای بررسی کاهه ویژگی‌ها یک مولکول مصنوعی که دارای کاربردهای پزشکی و فناوری زیستی زیادی (ELP، Elastin like protein) است. پلیپپترید شبه‌الاستین (ELP) است. یک پلمر زیستی مصنوعی مهندسی و مشتق شده از توایی اسید‌الامینهای موجود در بخش‌های آلی‌های تروپوالاستین است که به‌صورت یک پلمر هوشمند، قابلیت خودجمع‌یا دارای تنش (10). ترکیب اسید‌الامینهای اغلب شامل توایی (پلدنروما) است که از 5 اینمولوپلیمر (پلپیپترید شبه‌الاستین تغییر پایه (5-3)). این پلمر در بافت و رنگ پیلی‌پپترید به‌کمک واکنش محیطی در اثر تغییرات pH تولید می‌شود. VPGXG پیوند باشید. داخل دندان پروتئین سبب می‌شود که ارتباط آبگریز برای اتصال پلیپپترید شبه‌الاستین تغییر یابد. از سوی دیگر، یک پلیپپترید و اکتیوت گرماپوش است که از دارایی خاص خود分化 و ایمنی به دو انتخاب. برای این پروتئین سنتزی، یک دام و اکتیوت بنام دام انتقالی مکروسیم RTC یا IT، Reversible or Inverse Transition Temperatur (LCST، Lower Critical (کمترین دمای محمول) (ELP، Solution Temperature) تعریف می‌گردد. ویژگی پروتئین یکی از اصلی دمای انتقالی طویل است که اگر دمای محمول واکنش کمتر از دمای انتقالی بوده در هر جایی T1، باشد، موکول‌های ELP کانفراموژین‌گری مولکول‌های ایجاد کرده (به لحاظ دانشگاه علوم پزشکی و خدمات بهداشتی - دانشگاه شهید صوفیان)
کیلودانلیون، با استفاده از روش مولکولی RDL است، با توجه به خصوصیات منحصر به فرد ELP به خصوص عملکرد ال‌اس‌کیو، آنزیم‌های مخصوص و تولیدان E.coli، از ایجاد موفقیت‌آمیز تخلیه این پروتئین‌ها استفاده از یک گونه از روش ITC، پیانگر صحت عملکرد نمونه پروتئین نوترکیب تولیدی است که می‌تواند در مطالعات بعید برای استفاده‌های پزشکی مورد بهره برداری قرار گیرد.

روش بررسی

ELP الگوی‌پردازی pBlue-ELP (BglI / PflMI) تبدیل، تربیت و زایمان ELP60 و ELP.10

استفاده از آنزیم T4 لیگاز، به هم‌دیگر متصل و درون باکتری E.coli انتقال یافته. برای این اساس بعد از 5 بار تکرار روش الگوی‌پردازی pBlue-ELP10 به استفاده از XLI-Blue سوبه RDL، الگوی‌پردازی pBlue-ELP به دست آمد. ELP60 GL1 و ELP.40 ELP.30 ELP.20 (شکل 2). الگوی‌پردازی صحیح با استفاده از هضم دو آنزیم پلاسمید (PflMI / BglI) pBlue-ELP تایید گردید.

طراحی نمونه (5، 15) (2) می‌تواند از یک منویول اولیه به شکل ترکیب از بکتری E.coli و تولیدگر ELP، در زمان‌های منفی قانونی باشد. در نتیجه این روش، تولید کنری مشابه دارد. جهت ا حت رنگ بنده در داخل بدن که ELP وابسته به طول پلیمر است، تایید شده است (17). (3) می‌تواند در میزان گرم در لیتر تولید شود که از نظر هزینه‌ای یک پلیمر سازگار، روشی است، که در مطالعات درون بدن می‌تواند مورد استفاده قرار گیرد (5، 15). (2) می‌تواند برای نمونه‌برداری نوع اسیدآمینه اولیه که شده در موقعیت X، علائمی به‌دست می‌آید محرک‌های فیزیکی (ظاهر عمومی احیایی، pH و نور) نیز واکنش خودتجمیع از خود نشان دهد (26-27).

هدف تحقیق حاضر تولید مصنوعی و نوترکیب پلیمر ویژه ELP به میزان 900 باری و وزن مولکولی حدود 35 ELP.10

شکل 1: تصویری از ترکیب استفاده‌های و نشته زنی ELP10 سپس با استفاده از روش RDL کتابخانه‌ای از 5 پلیمر به دست آمد. برای این منظور ابتدا پلاسمید نوترکیب که ELP10 به سه تایی از بکتری حاوی pBlue-ELP10 نام داده شده بود، با استفاده از آنزیم BglI و PflMI هضم شد. شکل ELP10 آزاد گردید. (PflMI / BglI) pBlue-ELP10 به موارد پلاسمید بهبود از آنزیم CIP، با استفاده از پلاسمید خنثی شده از روی زن تخلیه و با

مجله دانشگاه علوم پزشکی و خدمات بهداشتی - دارمانی شهید صدوقی برد

دروزه، 23، شماره 5، مرداد 1396
همسانه سازی بیان ارزیابی عملکرد پروتئین...

![Diagram](RDL.png)

همسانه سازی و بیان ELp60 از وکتور تغییر شکل پایه ELp60 از همسانه سازی با آنزیم ANTI pET25b استفاده شد. در وکتور تغییر شکل پایه SfiI نمایش داده شد.

ضایع افزودن بار اکثر مولکولهای در سلولی با ELp60 سفت اینقیحه آنزیم EcoRI و NdeI در ELp60 با ELp60 سفت اینقیحه انتقال به شکل SfiI و مولکولهای تغییر شکل pET25b استفاده شد. مولکولهای با ELp60 سفت اینقیحه در ELp60 سفت اینقیحه می‌شود.

نتایج

ستن عضوی و سازه بیانی ELp60 و سازه مصنوعی pBlue-ELP60 ساخته می‌شود. انتقال ELp60 از وکتور ANTI EcoRI و NdeI با استفاده از ضایع افزودن بار مولکولهای در سلولی با ELp60 سفت اینقیحه نشان داد.

در شکل تغییر شکل یافته در سلولی با ELp60 سفت اینقیحه نشان داد.

dr(10kDa)
dr(15kDa)
dr(20kDa)
dr(30kDa)
dr(40kDa)
dr(50kDa)
dr(60kDa)
dr(70kDa)
dr(80kDa)
dr(90kDa)
dr(100kDa)
dr(150kDa)
dr(200kDa)
dr(250kDa)
dr(300kDa)
dr(350kDa)
dr(400kDa)
dr(450kDa)
dr(500kDa)
dr(550kDa)
dr(600kDa)
dr(650kDa)
dr(700kDa)
dr(750kDa)
dr(800kDa)
dr(850kDa)
dr(900kDa)
dr(950kDa)
dr(1000kDa)

dr(20kDa)
dr(30kDa)
dr(40kDa)
dr(50kDa)
dr(60kDa)
dr(70kDa)
dr(80kDa)
dr(90kDa)
dr(100kDa)
dr(150kDa)
dr(200kDa)
dr(250kDa)
dr(300kDa)
dr(350kDa)
dr(400kDa)
dr(450kDa)
dr(500kDa)
dr(550kDa)
dr(600kDa)
dr(650kDa)
dr(700kDa)
dr(750kDa)
dr(800kDa)
dr(850kDa)
dr(900kDa)
dr(950kDa)
dr(1000kDa)

dr(20kDa)
dr(30kDa)
dr(40kDa)
dr(50kDa)
dr(60kDa)
dr(70kDa)
dr(80kDa)
dr(90kDa)
dr(100kDa)
dr(150kDa)
dr(200kDa)
dr(250kDa)
dr(300kDa)
dr(350kDa)
dr(400kDa)
dr(450kDa)
dr(500kDa)
dr(550kDa)
dr(600kDa)
dr(650kDa)
dr(700kDa)
dr(750kDa)
dr(800kDa)
dr(850kDa)
dr(900kDa)
dr(950kDa)
dr(1000kDa)

dr(20kDa)
dr(30kDa)
dr(40kDa)
dr(50kDa)
dr(60kDa)
dr(70kDa)
dr(80kDa)
dr(90kDa)
dr(100kDa)
dr(150kDa)
dr(200kDa)
dr(250kDa)
dr(300kDa)
dr(350kDa)
dr(400kDa)
dr(450kDa)
dr(500kDa)
dr(550kDa)
dr(600kDa)
dr(650kDa)
dr(700kDa)
dr(750kDa)
dr(800kDa)
dr(850kDa)
dr(900kDa)
dr(950kDa)
dr(1000kDa)

dr(20kDa)
dr(30kDa)
dr(40kDa)
dr(50kDa)
dr(60kDa)
dr(70kDa)
dr(80kDa)
dr(90kDa)
dr(100kDa)
dr(150kDa)
dr(200kDa)
dr(250kDa)
dr(300kDa)
dr(350kDa)
dr(400kDa)
dr(450kDa)
dr(500kDa)
dr(550kDa)
dr(600kDa)
dr(650kDa)
dr(700kDa)
dr(750kDa)
dr(800kDa)
dr(850kDa)
dr(900kDa)
dr(950kDa)
dr(1000kDa)
جهت تولید پلاسمید نوتریلکبی pET-ELP۶٠ محصول هضم دو آنزیمی که یک قطعه حجم ۹۰۰ باری است، مورد پلاسمیدی SfiI، خش‌شده توسط آنزیم pET25۰ درون پلاسمید‌های زیب‌سازی‌شده هضم دو آنزیمی (PflMI/BglII) پلاسمید نوتریلکبی جدید و آزاد شدن قطعه ۹۰۰ باری.

تاییدکننده حضور ELP۶٠ درون پلاسمید جدید تولیدی است (شکل ۳). همچنین قطعه مربوطه مورد تایید توالی نیز قرار گرفت که نتایج یافته‌های صحت همان‌گونه‌ای قطعه مربوطه است (نتایج نشان داده‌نشده است).

(شکل ۳) پرپسی کتانابه‌ای پیچیده ELP با استفاده از هضم دو آنزیمی ELP۶٠ (۱) پلاسمید هضم نشده، (۱kb) DNA (M) ۱۰۰ (۳) ۶۰ (۴) ۵۰ (۵) ۴۰ (۶) ۳۰ (۷) ۲۰ (۸) ۱۰ (۹) مارکر وزنی.

(شکل ۴) هضم دو آنزیمی PflMI/BglII پلاسمید نوتریلکبی ELP۶٠ (۱) پلاسمید هضم نشده، (۱kb) DNA (۱) مارکر وزنی (۲) ثبت کننده عملکرد مطلوب ELP۶٠ تولیدی است.

(pET-ELP۶٠) تولید ELP۶٠ باکتری نوتریلکبی BL21 (DE3). حاوی پلاسمید باین pET-ELP۶٠ SDS-PAGE، سپس از الفا با استفاده از روش مورد بررسی قرار گرفت. مطلق شکل ۵، میان با وزن مولکولی حداکثر ۲۵ کیلودالتونی نایب‌گرایی برای ITC جریه متوالی گرام‌ها و سرمداهی، پروتئین مصرف‌کننده دانشگاه علوم پزشکی و خدمات بهداشتی-درمانی شهید صدوقی یزد
بحث و نتیجه گیری
پیشنهاد مشتق شده از الاستین دارای کاربردهای زیادی در فناوری زیستی و پزشکی است. از آن جمله می‌توان به رهایش کنترل‌شده دارو (ITC) و خالص‌سازی پروتئین‌های ترکیب ELP3 (2002) اشاره نمود. اولین بار این پروتئین در سال 2005 توسط چیلکوتی (Chilkoti) با استفاده از طریق مهندسی زنده تولید شد (9) و بر روی پژوهش‌های فانگ (Fong) و همکاران در سال 2010 که بر روی پیشنهاد شده است ریک، ترکیب پروتئین صورت گرفته است، نشان می‌دهد که جانچه تولید کشته باشد ترکیب بهتر صورت می‌گیرد (31). به همین منظور در این پروژه از طول 900 جفت باری و ۶ تکرار ۱۰۰ تایی از توایی استفاده شد تا بهترین حالت برای ترکیب VPGG(G/A)G پروتئین چهت و مطالعات آنی ایجاد گردد. همچنین یکی از عوامل مؤثر بر روی دمای Tt نوع استادآمینه موقعیت X است. دیگرین گلیسین و آلابین، جزو استادیه امینه آبگریز و غیرقابلی هستند که در این پژوهش در موقعیت X به‌صورت متواپی استفاده شده است. درصورتی که اگر از استادیه آمینه کانیونی یا آبیونی استفاده می‌شد، بر روی دمای ترکیب Tt افزایش و نمی‌گیرد و اگر تولید بیش‌تری از استادیه آمینه صورت نمی‌گیرد و اگر تولید بیش‌تری از استادیه آمینه صورت نمی‌گیرد و اگر تولید بیش‌تری از استادیه آمینه صورت نمی‌گیرد و اگر تولید بیش‌تری از استادیه آمینه صورت نمی‌گیرد و اگر تولید بیش‌تری از استادیه آمینه
References:

4- Park JE, Won JJ. Thermal behaviors of Elastin- like Polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnol Biopro Eng 2009; 14: 662-67.

19- Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(Gvgvp) and its gamma-irradiation cross-linked matrix - summary of generic biological test results 1991; 6(3): 263-82.

22- Urry DW, Hayes LC, Gowda DC, Harris CM, Harris RD. Reduction-driven polypeptide folding by the delta-TT mechanism. Biochem Biophys Res Commun. 1992; 188:611–617

Cloning, expression and functional assessment of elastin like protein: a new protein in medical engineering

Neda Rezaeinasab ¹, Mehdi Zeinoddini ²*, Ali Reza Saeedinia ³

¹,²,³ Genetic Engineering, Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran

Received: 29 Dec 2016 Accepted: 6 Jul 2017

Abstract

Introduction: Elastin like protein or ELP is a synthetic biopolymer consisting the pentapeptide repeats of VPGXG (X can be any amino acid except Pro). This protein is the thermal responsive polypeptide that undergoes a reversible phase transition. At a temperature below the transition temperature (Tt), ELP molecules assume an extended conformation and thus are soluble in aqueous solution; but upon the temperature shift higher than the Tt, however, ELPS become insoluble and form the segregated phase prone to 'aggregate' form. The aim of this study was cloning, expression and activity of ELP₆₀ according to Tt.

Methods: Firstly, ELP₁₀ (150 bp) was synthesized and cloned into pBluescript. Then, Elp₆₀ (900 bp) was produced using recursive directional ligation (RDL). Finally, ELP₆₀ was subcloned into modified pET25 and ELP₆₀ expression was confirmed using SDS-PAGE method. Also, ELP₆₀ were purified according to Tt and performance of inverse transition cycle (ITC), which confirmed its activity.

Results: The results were shown that the pET-ELP₆₀ constructed and ELP₆₀ expressed; it was successfully purified (about 90%) in one step and non-chromatographic method.

Conclusion: From produced recombinant protein can be used for simple and easy purification of the recombinant protein as pharmaceutical drug, smart drug delivery and tissue engineering.

Keywords: Cloning, Elastin Liked Protein, Inverse Transition Cycling, Purification, Recursive Directional Ligation.

This paper should be cited as:

*Corresponding author: Tel: 09122148110, email: zeinoddini52@mut.ac.ir