چکیده:
Pروتئین شبه الاستین (ELP) یک پلیمری ریزستی مصنوعی شامل توالی‌های تکراری از پنتا پپتید X (VPGXG) است. این پروتئین از تکثیر و واکنش دما‌ای است که دارای یک فاز انتقالی برگشت‌پذیر است.

در دمای زیر دمای انقلا، ELP به شکل فضایی باز شده در اندم و بنابراین در محول‌های این محصول تغییر نمی‌کند. ELP به محصولات غیر محول و شبیه آگریکه از محلول خارج می‌شود. هدف این مطالعه اخیر، تکثیر تقویت‌کننده‌های ELP با پپتید Tt بود.

نتایج:

1. کپسول بیوتکنولوژی مولکولی، گزوه مهندسی ژنتیک، پژوهشکده علوم و فناوری سیستی، دانشگاه صنعتی ملک اشت، تهران
2. دانشیر، گروه مهندسی زیستی، پژوهشگاه علوم و فناوری زیستی، دانشگاه صنعتی ملک اشت، تهران
3. استادیار، گروه مهندسی زیستی، پژوهشگاه علوم و فناوری زیستی، دانشگاه صنعتی ملک اشت، تهران

زیئنودینی S2- ملک، پست الکترونیکی: zeinoddini52@mut.ac.ir

تاریخ دریافت: 90/01/15
تاریخ پذیرش: 1396/01/15

واژه‌های کلیدی: همسانه‌سازی، بای‌پپتید، شبه الاستین، انتقال‌دهنده از محول، تخلیص، انتقال‌دهنده از محول.
مقامه

پیشرفت روزافزون فناوری زیستی و فناوری نانو و کاربردهای
وسع این در پزشکی و داروسازی، سبب نباید به مواد زیستی
جدید با کارایی بالا شده است. امرز مورد نیاز که قابلیت
خودجویی و پاسخده به تغییر شرایط محیطی داشته باشد
از اهمیت بسیاری در بیماران مراجعه نمود. این امر در اثر
بیماری ناشی از نقص مولکول‌یا
زیستی پرگنتر است. درنی‌جه مولکول‌یا زیستی تکنیک توسعه
پلیمرها زیستی جدید با پیچیدگی و عملکرد مشابه پلیمرها
طبیعی ساخته شده در بستر فراهم می‌آمد. این استفاده
از مولکول‌یا این امکان وجود دارد که انواع مهم
عکس دهند. با این حال تولید دقیق و دقت
یک مولکول نیاز به در ایجاد
این تکنیک محدود است. در
کاربردهای گسترش یافته است. این پیش‌بین
می‌تواند مختلف از باکتری‌ها، گیاه و قرار
پایان اصالت که مشابه یا تغییر می‌گردد. RDL، Recursive (Directional Ligation)
با این روش، ابتدا تولید ۱0-۱۱ تاپی از یک پیش‌بین شبه
در باکتری‌ها یا جراحاتی مشابه پلیمرها
این قطعه به ویژه خشک شده منش می‌گیرد. از آن
یک کتابخانه تهیه از عملکرد ELP
از حدود ۴۵ سال پیش تاکنون موضوع سیبیار
مطالعات بوده است و در ۲۰ سال اخیر کار بر روی
میکروکول‌ها بسیار گسترش یافته است. این پیش‌بین
در میزان‌ها مختلف از باکتری‌ها، گیاه و قرار
پایان شده است که بیشترین مطالعات بر روی آن در
در اصل E.coli گرفته است (۱۲-۱۱). همان‌گونه که اشاره شد,
کاربردهای گسترش یافته و /سیبیار زیستی و
پزشکی است. که به در نسبت تغییر‌های تغییر می‌گردد. رسانش
مسیر روانی هم در سطوح خصوصی از سطوح
که از ۵ ایمنواسید
رو الیت‌های مولکول برای مهندسی باید. تولید می‌باشد
مناسب حامل دراو در فناوری نانو از جمله میکروب مهیم
پلیمر زیستی است (۱۴) از طرف دیگر، امکان تولید را برای
پلیمر در باکتری و در حجم بالا و نیز امکان دقت تولید
و رفتار بولی‌لیپر اهمیت برده‌اند. این قطعه
علت کاربرد و سیبیار پلیمر مصنوعی را می‌توان به دلیل
ویژگی‌های منحصر به فرد آن داشته که به صورت زیر خلاصه
بندی می‌شود (۱۵) مربوط به ELP و این ELP
دارای دانه و سیبیار از ۱۰۰ درجه سانتی‌گراد است. درنتیجه برا
ما می‌توان نمونه‌های مختلف ELP برای کاربردهای اختصاصی
(نظیر رهاش دارو. تولید دارد نوترکیب با داروهای کاشتنی).
کیلوتومی، با استفاده از روش مولکولی RDL است. برای توجه به خصوصیات منحصر به فرد ELp به خصوص عامل‌کننده وادار شده، انجام موجودیت آمیز تحلیل این پروتئین با استفاده از روش ITC، اینگار صحت عملکرد نمونه پروتئین نوترکیب تولیدی است که می‌تواند در مطالعات بعدی برای استفاده‌های پزشکی مورد بهره برداری قرار گیرد. تهیه روش بررسی ELp

این گروه از ابتدا تنها ELp10 با توالی [VPGV(G/A)G]10 که به بزرگی درآورده 20 برابر ابتدا، این گروه به شکلی المستنده شدند که در جایگاه EcoRV بلاسیمید pBluescript به منظور الیگوپریاسیون و زیر هماسه‌های متنوعی ELP10 آزمی یافت شد و این ترتیب در انتهای ۲ و ۳ ترادر ELp10 قرار داده شد (شکل 1).

طرح‌های نمونه (۲) می‌تواند از یک مونومر اولیه به شکل نوترکیب درون باکتری E.coli به صورت پیلمرها با اندازه‌های مختلف تولید گردد. در نتیجه در راه‌اندازی کنترل شده داروی حذف از بدن و نیمه عمر پلیمر در داخل بدن که از واکنش طول پلیمر است. تأثیرگذار است (۳). می‌تواند در میزان گرم در لبی تولید شود که از نظر هزینه‌ای مقرر می‌باشد است (۱۸). این پلیمر سازگار زیستی است. لذا در مطالعات عصبی می‌تواند مورد استفاده قرار گیرد (۱۹). می‌تواند برای نبودن نوع اسید‌امیدنی قرار داده شده در موقعیت X علاوه بر دما، سبب ایجاد محکم‌های فیزیکی (نظری عوامل احیایی pH و نور) نیز واکنش خودتجمیعی از خود نشان دهد (۲۰). هدف تحقیق حاضر تولید مصنوعی و نوترکیب پلیمر ژنتیکی با میزان ۹۰۰ باری و وزن مولکولی حدود ۳۵ ELp60.
همسانه سازی و بیان آنزیمی ELP60 از وکتور تغییر شکل E.coli از طریق درون پلاسمیدی (pET-ELP60) با استفاده از هضم انزیمی (EcoRI / NdeI) به باکتری بینایی انتقال یافته و به راحتی در محیط کشت حیاتی 50 μg/ml آمیکسین و دمای 37 درجه سانتی‌گراد و رساند به OD_{600}=0.6 با استفاده از یک میلی‌مولار IPTG مورد بررسی قرار گرفت.

تخلیص

يهاچه صورتگرفت در نهایت بیان ELP60 با استفاده از سه بار تکرار نمایی و ELP60 درون پلاسمید تغییر شکل یافت.

همسانه سازی و بیان آنزیمی ELP60

برای همسانه سازی و بیان آنزیم ELP60 از وکتور تغییر شکل E.coli از طریق درون پلاسمیدی (pET-ELP60) با استفاده از هضم انزیمی (EcoRI / NdeI) و اثر هضم دو آنزیمی pBlue-ELP60 و EcoRI نسبت به آنزیم خوی و T4 لیپاسید و pET25b تغییر یافته نیز با انزیم خوی و تخلیص می‌گردد. پس از اتصال دو بخش، محصول به دست آمده درون باکتری بینایی انتقال یافته XL1-Blue سبک E.coli. آمده درون باکتری بینایی انتقال یافته XL1-Blue سبک E.coli.

همسانه سازی و بیان آنزیمی ELP60

برای همسانه سازی و بیان آنزیمی ELP60 از وکتور تغییر شکل E.coli از طریق درون پلاسمیدی (pET-ELP60) با استفاده از هضم انزیمی (EcoRI / NdeI) و اثر هضم دو آنزیمی pBlue-ELP60 و EcoRI نسبت به آنزیم خوی و T4 لیپاسید و pET25b تغییر یافته نیز با انزیم خوی و تخلیص می‌گردد. پس از اتصال دو بخش، محصول به دست آمده درون باکتری بینایی انتقال یافته XL1-Blue سبک E.coli. آمده درون باکتری بینایی انتقال یافته XL1-Blue سبک E.coli.

همسانه سازی و بیان آنزیمی ELP60

برای همسانه سازی و بیان آنزیمی ELP60 از وکتور تغییر شکل E.coli از طریق درون پلاسمیدی (pET-ELP60) با استفاده از هضم انزیمی (EcoRI / NdeI) و اثر هضم دو آنزیمی pBlue-ELP60 و EcoRI نسبت به آنزیم خوی و T4 لیپاسید و pET25b تغییر یافته نیز با انزیم خوی و تخلیص می‌گردد. پس از اتصال دو بخش، محصول به دست آمده درون باکتری بینایی انتقال یافته XL1-Blue سبک E.coli. آمده درون باکتری بینایی انتقال یافته XL1-Blue سبک E.coli.

همسانه سازی و بیان آنزیمی ELP60

در رضایی نسب و همکاران
مجله دانشگاه علوم پزشکی و خدمات بهداشتی – درمانی شهید صدوقی پزد
دوره ۲۵، شماره ۵، مهر ۱۳۹۶

جهت تولید پلاسمید نوترکیب pET-ELP60 محصول هضم دو آنزیمی که یک قطعه حسوب ۹۰۰ بازی است، درون پلاسمید pBlue-ELP60 خصی شده توسط آزمایشگاه تمهید می‌شود. هضم دو آنزیمی (PflMI/BglII) زبرهسسان‌سازی می‌شود. پلاسمید نوترکیب جدید و آزاد شدن قطعه حداکثر ۹۰۰ بازی

شکل ۳: پرینت کتابخانه پلیمری ELP با استفاده از هضم دو آنزیمی PflMI/BglII (۱) از مارکر ورنی (M). ELP10 (۲), ELP20 (۳), ELP30 (۴), ELP40 (۵), ELP50 (۶)

شکل ۴: هضم دو آنزیمی PflMI/BglII (۱) از پلاسمید هضم شده، (۲) ۱kb DNA (۳), (۴) ۱kb DNA (۵) مارکر ورنی.

شکل ۵: تولید pET-ELP60 باکتری نوترکیب pET-BL21 (DE3). حاوی پلاسمید بی‌پای. SDS-PAGE مورد بررسی قرار گرفت. SDS-PAGE مورد بررسی قرار گرفت. مطلق شکل ۵، بیان با وزن مولکولی حداکثر ۳۵ کیلوالتونی، تایید گردید. در ادامه بعد از سه بار تکرار ITC (جرخه متوالی گرماده و سرمازدگی) پروتئین

شکل ۶: هضم دو آنزیمی PflMI/BglII (۱) از هضم شده، (۲) ۱kb DNA (۳), (۴) ۱kb DNA (۵) مارکر ورنی.

شکل ۷: تولید ELP60 باکتری نوترکیب pET-BL21 (DE3). حاوی پلاسمید بی‌پای. SDS-PAGE مورد بررسی قرار گرفت. SDS-PAGE مورد بررسی قرار گرفت. مطلق شکل ۵، بیان با وزن مولکولی حداکثر ۳۵ کیلوالتونی، تایید گردید. در ادامه بعد از سه بار تکرار ITC (جرخه متوالی گرماده و سرمازدگی) پروتئین

شکل ۸: تولید ELP60 باکتری نوترکیب pET-BL21 (DE3). حاوی پلاسمید بی‌پای. SDS-PAGE مورد بررسی قرار گرفت. SDS-PAGE مورد بررسی قرار گرفت. مطلق شکل ۵، بیان با وزن مولکولی حداکثر ۳۵ کیلوالتونی، تایید گردید. در ادامه بعد از سه بار تکرار ITC (جرخه متوالی گرماده و سرمازدگی) پروتئین

شکل ۹: تولید ELP60 باکتری نوترکیب pET-BL21 (DE3). حاوی پلاسمید بی‌پای. SDS-PAGE مورد بررسی قرار گرفت. SDS-PAGE مورد بررسی CQ-forward حداکثر ۳۵ کیلوالتونی، تایید گردید. در ادامه بعد از سه بار تکرار ITC (جرخه متوالی گرماده و سرمازدگی) پروتئین

شکل ۱۰: تولید ELP60 باکتری نوترکیب pET-BL21 (DE3). حاوی پلاسمید بی‌پای. SDS-PAGE مورد بررسی CQ-forward حداکثر ۳۵ کیلوالتونی، تایید گردید. در ادامه بعد از سه بار تکرار ITC (جرخه متوالی گرماده و سرمازدگی) پروتئین
بحث و نتیجه گیری

پیشنهاد مشتق شده از الایستین‌های کاربردهای زیادی در فناوری زیستی و پزشکی است. از آن جمله می‌توان به راهش کنتل‌شنده دارو (مکه) و خالص‌سازی پروتئین‌های نوترکیب (۱۶-۲۰) اشاره نمود. اولین بار از پروتئین در سال ۲۰۰۲ توسط چیکوتنی به صورت مصنوعی از طریق مهندسی زنگیکا تولید شد (۹) و تا به امروز مورد استفاده قرار گرفته است. در سال ۲۰۰۵، وود و همکاران از این پروتئین در حالت (Wood) جهت تخلیص پروتئین‌های نوترکیب استفاده کردند (۷۷). در تولید ELP، تیتیو و تعیین دمای انتقال Tt از اهمیت زیادی برخوردار است. به طوری که تا اگر طول توالی بیش از حد کوتاه باشد تخلیص به‌خوبی صورت می‌برد. اگر طول توالی بیش از حد بلند باشد نیز در فرآیند...

در cellphone‌های مشتق شده از الایستین‌های کاربردهای زیادی در فناوری زیستی و پزشکی است. از آن جمله می‌توان به راهش کنتل‌شنده دارو (مکه) و خالص‌سازی پروتئین‌های نوترکیب (۱۶-۲۰) اشاره نمود. اولین بار از پروتئین در سال ۲۰۰۲ توسط چیکوتنی به صورت مصنوعی از طریق مهندسی زنگیکا تولید شد (۹) و تا به امروز مورد استفاده قرار گرفته است. در سال ۲۰۰۵، وود و همکاران از این پروتئین در حالت (Wood) جهت تخلیص پروتئین‌های نوترکیب استفاده کردند (۷۷). در تولید ELP، تیتیو و تعیین دمای انتقال Tt از اهمیت زیادی برخوردار است. به طوری که تا اگر طول توالی بیش از حد کوتاه باشد تخلیص به‌خوبی صورت می‌برد. اگر طول توالی بیش از حد بلند باشد نیز در فرآیند...

پیشنهاد مشتق شده از الایستین‌های کاربردهای زیادی در فناوری زیستی و پزشکی است. از آن جمله می‌توان به راهش کنتل‌شنده دارو (مکه) و خالص‌سازی پروتئین‌های نوترکیب (۱۶-۲۰) اشاره نمود. اولین بار از پروتئین در سال ۲۰۰۲ توسط چیکوتنی به صورت مصنوعی از طریق مهندسی زنگیکا تولید شد (۹) و تا به امروز مورد استفاده قرار گرفته است. در سال ۲۰۰۵، وود و همکاران از این پروتئین در حالت (Wood) جهت تخلیص پروتئین‌های نوترکیب استفاده کردند (۷۷). در تولید ELP، تیتیو و تعیین دمای انتقال Tt از اهمیت زیادی برخوردار است. به طوری که تا اگر طول توالی بیش از حد کوتاه باشد تخلیص به‌خوبی صورت می‌برد. اگر طول توالی بیش از حد بلند باشد نیز در فرآیند...
References:

4- Park JE, Won JI. Thermal behaviors of Elastin-like Polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnol Biopro Eng 2009; 14: 662-67.

19- Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(Gvgvp) and its gamma-irradiation cross-linked matrix - summary of generic biological test results 1991; 6(3): 263-82.

Cloning, expression and functional assessment of elastin like protein: a new protein in medical engineering

Neda Rezaeinasab 1, Mehdi Zeinoddini 2*, Ali Reza Saeeidinia 3

1,2,3 Genetic Engineering, Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran

Received: 29 Dec 2016 Accepted: 6 Jul 2017

Abstract

Introduction: Elastin like protein or ELP is a synthetic biopolymer consisting the pentapeptide repeats of VPGXG (X can be any amino acid except Pro). This protein is the thermal responsive polypeptide that undergoes a reversible phase transition. At a temperature below the transition temperature (Tt), ELP molecules assume an extended conformation and thus are soluble in aqueous solution; but upon the temperature shift higher than the Tt, however, ELPs become insoluble and form the segregated phase prone to ‘aggrigate’ form. The aim of this study was cloning, expression and activity of ELP60 according to Tt.

Methods: Firstly, ELP10 (150 bp) was synthesized and cloned into pBluescript. Then, Elp60 (900 bp) was produced using recursive directional ligation (RDL). Finally, ELP60 was subcloned into modified pET25 and ELP60 expression was confirmed using SDS-PAGE method. Also, ELP60 were purified according to Tt and performance of inverse transition cycle (ITC), which confirmed its activity.

Results: The results were shown that the pET-ELP60 constructed and ELP60 expressed; it was successfully purified (about 90%) in one step and non-chromatographic method.

Conclusion: From produced recombinant protein can be used for simple and easy purification of the recombinant protein as pharmaceutical drug, smart drug delivery and tissue engineering.

Keywords: Cloning, Elastin Liked Protein, Inverse Transition Cycling, Purification, Recursive Directional Ligation.