رده‌بندی: الگوهای تکسین نیوالنول در بذور روناس آلووده به

PCR فارچه‌های فوزاریوم با استفاده از

سید محسن حسینی نژاد، مصطفی عابدی‌نیزکی*، سید علیرضا اسماعیل زاده حسینی، فاطمه کارگر

کمال صادقی خمارتاجی

چکیده:

هدف از این تحقیق شناسایی ماکیوتوکسین‌های تریکوتسمین تولیدی توسط فارچه‌های فوزاریوم همراه با استفاده از روش‌های مولکولی و بیوشیمیایی است.

روش بررسی: در این مطالعه تجربی از مناطق مختلف کشت روناس در اردکان و باغ‌های بید از بذور روناس نمونه‌برداری به عمل آمد. پس از کشت و خاصیت‌های گونه‌ها کسب‌شده از فوزاریوم در میکروتیپ‌ها، رده‌بندی فارچه‌ی دارای تولید تولید توسط فارچه‌های فوزاریوم تولیدی ماکیوتوکسین تریکوتسمین از جمله نیوالنول (NIV) از طریق آزمایش‌های اختصاصی زن 13 (Tri13) توسط ماکیوتوکسین‌های انتخاب شده. نتایج تاکید و تاکید پس از TOL که در نتیجه PCR با کارایی بالا با کارایی بالا به بهره‌برداری از HPLC (استفاده شد.

NIV در گونه‌های فوزاریوم از کروماتوگرافی مایع با کارایی بالا و PCR استفاده شد.

F. poae و F. poae

نکته: در این بررسی یک گونه فوزاریوم از بذور روناس بی‌ساطو و شناسایی شدند. که این بین گونه‌های F. poae و F. poae تولیدی ماکیوتوکسین نیوالنول را دارا بودند. وجود زن 13 Tri13 در دو گونه F. poae و F. poae تولیدی F. poae تولیدی ماکیوتوکسین نیوالنول را دارا بودند. 

نتیجه: بنابراین در تولید تریکوتسمین نیوالنول دار. لذا با استفاده از PCR للمی‌توان فارچه‌های دارای تولید ماکیوتوکسین را در محصولات مختلف سرsticeٔ تولید و شناسایی کرد.

واژه‌های کلیدی: روناس، بذور، فوزاریوم، نیوالنول

---

1-دانشجویی پزشکی. کمیته تحقیقات دانشگاه علوم پزشکی شهید صدیقی
2-پزشک معمولی شبه‌تخت و درمان ابزک
3-پزشک عمومی شبه‌تخت و درمان ابزک
4-پزشک عمومی شبه‌تخت و درمان ابزک
5-پزشک عمومی شبه‌تخت و درمان ابزک
6-پزشک عمومی شبه‌تخت و درمان ابزک

m.abeditizaki@gmail.com

* (نویسنده مسئول) تلفن: 91327373600، پست الکترونیکی: m.abeditizaki@gmail.com

تاریخ دریافت: 1395/9/20، تاریخ پذیرش: 1395/9/20

---

Journal of Shahid Sadoughi University of Medical Sciences
Vol. 24, No.12, Feb- Mar 2017
Pages:952-962
نیز معروف‌اند (2). از تریکوتئسین‌های نوع B می‌توان به نیوالنول (NIV: Nivaleno) و مشابه استیل آنها (DON: Deoxynivalenol) مانند ۴-استیل نیوالنول (4-AcNIV: 4-Acetyl) و ۱۵-استیل دی اکسی نیوالنول (۱۵-AcDON) اشاره کرد (۳). زنده‌های مختلفی از خوشه زنی مستلو سنتز تریکوتئسین‌ها در قارچ‌های فوزاریوم می‌باشد. از مهم‌ترین زنده سنتز‌کننده تریکوتئسین‌های می‌توان به زنده‌های Tri7 و Tri13 اشاره کرد. این زنده‌ها برای اولین بار در تولید این نوع تریکوتئسین‌ها در دی‌نیمال نیالنول که ردیابی این زنده‌ها می‌تواند در تشخیص سریع قارچ‌های تولید‌کننده مایکوتوکсин‌های کمک شایری بنماید (۴).

بررسی‌های داده است که تریکوتئسین نیوالنول سمت بیشتری برای انسان و دام در خطر بیماری کرده و از اکسی نیوالنول برای گیاه بیشتر سرم است (۵). پیشرفت تکنیک‌های مولکولی ردیابی و آنالیز تریکوتئسین‌های مانند NIV و DON در محصولات زراعی مختلف و بهبود محصولات تولیدی برای تغذیه دام و طبیعت را تسهیل کرده است (۶). یکی از روش‌های مولکولی که می‌توان به تعیین نیالنول یکی از مهم‌ترین می‌باشد. کاربرد واکنش زنجیره‌ای پلیمراز (PCR: Polymerase chain reaction) ماهیچه‌ها است که کار کرده (۷). ماهیچه‌ها در سرطان باله‌ای گروهی بین این مصرف‌های اولیه با کارکنان کرده است (۸).

فرآون‌ترین قارچ‌های طبیعی که سرطان باله‌ای را به‌آسانی می‌گردند، این قارچ‌ها می‌باشند. کاربرد واکنش زنجیره‌ای PCR می‌تواند به نحوی که می‌توان به تعیین نیالنول یکی از مهم‌ترین می‌باشد. کاربرد واکنش زنجیره‌ای پلیمراز (PCR: Polymerase chain reaction) ماهیچه‌ها است که کار کرده (۷). ماهیچه‌ها در سرطان باله‌ای گروهی بین این مصرف‌های اولیه با کارکنان کرده است (۸).

روئس با نام علمی روتیکشیی تریکوتئسین‌های فوزاریوم گیاهی است از Rubiatinctorum

برای اولین بار در تولید این نوع تریکوتئسین‌ها در دی‌نیمال نیالنول که ردیابی این زنده‌ها می‌تواند در تشخیص سریع قارچ‌های تولید‌کننده مایکوتوکسین‌های کمک شایری بنماید (۴).

روئس با نام علمی روتیکشیی تریکوتئسین‌های فوزاریوم گیاهی است از Rubiatinctorum

برای اولین بار در تولید این نوع تریکوتئسین‌ها در دی‌نیمال نیالنول که ردیابی این زنده‌ها می‌تواند در تشخیص سریع قارچ‌های تولید‌کننده مایکوتوکسین‌های کمک شایری بنماید (۴).

روئس با نام علمی روتیکشیی تریکوتئسین‌های فوزاریوم گیاهی است از Rubiatinctorum

برای اولین بار در تولید این نوع تریکوتئسین‌ها در دی‌نیمال نیالنول که ردیابی این زنده‌ها می‌تواند در تشخیص S

روئس با نام علمی R
این تکنیکها از حساسیت بسیار بالایی برخوردارند ویل با
این وجود هزینه بالایی مواد مشروط و زمان بر بودن، سپر
شه است تا در بعضی از موارد استفاده از این روش‌ها
محدود گردید.

از ناحیه مطالعات زنبیلی در زمینه وجود
ماکروگلیکن‌های قارچی همراه با درون‌روس صورت گرفته
است. لذا این تحقیق به منظور شناسایی و ردیابی
ماکروگلیکن‌های تولیدی توسط قارچ‌های فوژروم از جمله
تریکستین‌ها با استفاده از روش‌های مولکولی و بیوشیمیایی
صورت گرفت.

روش بررسی
در این مطالعه برای ترکیب طی سال زراعی ۱۳۹۱-۹۲ از
بثور روستا در مناطق مهم کشت روستاس در استان یزد از
جمله اردکان نمونه‌برداری به عمل آمد و نمونه‌های آلوده
داخل باکتیری ایستاد جمع‌آوری شده و در اسرع وقت به
آزمایشگاه منطق گردید. در آزمایشگاه به یوهیکلتی
سومی/دومرد گردید. از ۲۵ دندان در هر یوهیکلتی سه
درشت داده شدند و برای آب‌پوشیدن به هیپیکلتی
سپری شدند. به منظور شناسایی و با استفاده از تکنیک
PDA: Potato Dextrose با داشتن پلی‌پلیسیلیکسی انتخاب
W: Water Agar (WA) در محیط کشت‌های آب آگر (PDA) و‌بر یوهیکلتی آگر (CLA: Carnation Leaf Agar)
در مجموع کشت‌های در (CLA: Carnation Leaf Agar)
و بر یوهیکلتی آگر (CLA: Carnation Leaf Agar)
در مجموع کشت‌های ۱۲ ساعت تایمک سنتیگراد (۹۰ درجه سانتی‌گراد) در مزرعه قارچ‌های
ف. poae و F. equiseti (NIV) و گیاهی در
بر یوهیکلتی آگر (CLA: Carnation Leaf Agar)
و بر یوهیکلتی آگر (CLA: Carnation Leaf Agar)
در مجموع کشت‌های ۱۲ ساعت تایمک سنتیگراد (۹۰ درجه سانتی‌گراد) در مزرعه قارچ‌های
ف. poae و F. equiseti (NIV) و گیاهی در
بر یوهیکلتی آگر (CLA: Carnation Leaf Agar)
و بر یوهیکلتی آگر (CLA: Carnation Leaf Agar)
در مجموع کشت‌های ۱۲ ساعت تایمک سنتیگراد (۹۰ درجه سانتی‌گراد) در مزرعه قارچ‌های
ف. poae و F. equiseti (NIV) و گیاهی در
مرحله واسرخت سازی برای دمای ۹۴°C برای ۳۰ ثانیه، مرحله اتصال در دمای ۷۲°C برای ۴۰ ثانیه و مرحله به‌طور بازگشتی در دمای ۷۳°C برای ۴۰ ثانیه انجام گرفت. در پایان یک مرحله گسترش نهایی در دمای ۷۳°C برای ۵ دقیقه در نظر گرفته شد. سپس محصولات PCR به طور جداگانه بر روی زل ۱/۲ درصد آگارز الکتروفورز شدند.

درصد آگارز الکتروفورز شدن:

جدول ۱: میزان مواد موجود برای انجم کواکش زنچرهای بیلیمارز (حجم L) (۵۰μL)

<table>
<thead>
<tr>
<th>اجزای واکنش</th>
<th>غلظت نهایی (Stock)</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب مکث و دار تقطیر</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۱X</td>
<td>۱۰X</td>
<td>Bab PCR با ۱۵ میلی‌مول ژنتیکی منیزیم dNTP</td>
</tr>
<tr>
<td>۰/۳ mM</td>
<td>۱۰ mM</td>
<td>آغازگر Taq DNA polymerase</td>
</tr>
<tr>
<td>۴/۰ μM</td>
<td>۲۰ μM</td>
<td>Reverse آغازگر</td>
</tr>
<tr>
<td>۲/۰ μM</td>
<td>۲۰ μM</td>
<td>Template DNA</td>
</tr>
<tr>
<td>۶/۰ unit</td>
<td>۵ unit/μL</td>
<td></td>
</tr>
<tr>
<td>۰/۷۵ unit</td>
<td>۲۵ unit/μL</td>
<td></td>
</tr>
<tr>
<td>۰/۷۵ ng/μL</td>
<td>۴۵ ng/μL</td>
<td></td>
</tr>
<tr>
<td>Tri13F/Tri13R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲: توالی آغازگر

<table>
<thead>
<tr>
<th>(Sequence)</th>
<th>(bp)</th>
<th>(primer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tri13F</td>
<td>۴۱۵</td>
<td>Tri13R</td>
</tr>
<tr>
<td>Tri13R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

آغازگر PCR از طریق جدارهای نیکلیک و چربی، آنزیم PCR با PCRs آغاز گرفت. در پایان یک مرحله گسترش نهایی در دمای ۷۳°C برای ۵ دقیقه در نظر گرفته شد. سپس محصولات PCR به طور جداگانه بر روی زل ۱/۲ درصد آگارز الکتروفورز شدند. رنگ‌آمیزی محصولات با اتیدیوم بروماید صورت گرفت و سپس عکس‌برداری تحت نور UV در دستگاه زل داک (Bio-RAD, USA) انجام شد.

برای تعیین نوع تروفوتین تولیدی در گونه‌های فورازومورد نظر و ارتباط آن‌ها با نیکلیک و چربی SPF و F. equi esti از ۱۲ فار په اعوای نماینده از گونه‌های PCR
شلتوک‌های آلوده در دمای 40 درجه سانتی‌گراد به مدت 24 ساعت خشک شدن و سپس برنج‌های آلوده آسیاب شده و بطور حاصله به منظور استخراج توکسین مورد استفاده قرار گرفت. (10).

برای استخراج عصاره، ابتدا از هر نمونه 10 گرم پودر آسیاب شده توزین شد. سپس 100 میلی‌لیتر خلک (استونتریل 84) به نمونه‌ها اضافه شد. برای اختلاط خلک، نمونه‌ها به مدت 3 دقیقه از دستگاه بلندر با سرعت بالا استفاده گردید. پس از این اختلاط، برای صاف کردن عصاره از کاغذ صافی معمولی استفاده شد و مقدار 8 میلی‌لیتر از این عصاره صاف شده، برای تخلیص با ستون SPE برشادیدند.

برای ایجاد فشردش، فشرده‌شدن پیتربون انجام گرفت. سپس 5 میلی‌لیتر از عصاره‌های عصاره‌ای از ستون SPE (1/2-1 کپ هل) در تابه‌های 2-3 میلی‌لیتر در دقیقه بیرو داده شد. به محض ورود قسمت نیمه‌عصاره، ستون SPE 100/84% (شستی‌شده داده و سپس بطور تخلیصی شده در داخل تیوب جمع‌آوری گردید. ویا الا در دمای 4045 (خشک‌سازی) خشک شدند. پس از خشک کردن تیوب‌ها، 500 میلی‌لیتر خلک (استونتریل 84) به نمونه‌ها اضافه گردید و سپس با دستگاه ورتنکس به خوبی مخلوط شدند. بعد از این مرحله در صورت لزوم عصاره‌ها با کاغذ صافی 45 میکرومتتر صاف گردیدند و در نهایت 25 میکرولت از این عصاره تخلیص شده به دستگاه HPLC تزریق گردید.

برای تعیین حضور تریکوتسین در عصاره‌ها از دستگاه HPLC (Water)
برای تأیید توانایی گونه‌های در تولید تریکوتسین و بررسی ارتباط بین حضور زن 3 و تولید تریکوتسین از روش HPLC استفاده شد. 12 نمونه فارمی از دو گونه F. equiseti و F. poae HPLC به منظور ارزیابی تولید تریکوتسین انتخاب شدند. نتایج به دست آمده از نشان داد که تیپ شیمیایی NIV در عصاره‌های بررسی شده وجود دارد. زمان مانگکاری برای مشاهده نقطه اوج در گونه‌های فورازون مورد بررسی، توانایی نیویولون با زمان نمونه‌‌های استاندارد NIV/49 دقیقه ثبت شد (نمونه 1). 45 دقیقه نیویولون با زمان 5.40

نمودار 1: منحنی استاندارد NIV. زمان مانگکاری 140 دقیقه (زمان عبرت از ستون 15 دقیقه، جریان 10/5 ml/min).
بحث

وجود این قارچ‌های فورازیوم در بذر روناس که توانایی تولید مایکروکسین‌های تریکوتیسین را دارند می‌تواند بطور مستقیم و غیرمستقیم بر روی سلامتی و بهداشت مواد غذایی اثر بگذارد. یکی از متابولیتهای تولیدی مهم در قارچ‌های فورازیوم، مایکروکسین‌ها می‌باشد. بسیاری از گونه‌های فورازیوم تولید مایکروکسین‌های خطرناکی می‌کند که از طریق محصولات زراعی وارد چرخه غذایی انسان و دام می‌گردد. 

(12) گونه F. solani که از عصاره نیز از بذر روناس جداسازی گردد و به علت پاتوژن انسانی نیز محصول می‌شود و نابایناری وجود چنین گونه‌ای همراه بذر روناس می‌تواند یک خطر بالقوه برای سلامت انسان و دام باشد (13).

طول باده‌های حاصل از Zn13 با نتایج محققین دیگر مطابقت داشت. تکثیر این قطعه زن نشان دهنده حضور calonectrin-4 تریکوتیسین‌های Zn13 در تمام جداها است (2). زن‌های سنتزکننده تریکوتیسین‌ها (Tri) در یک خوش‌ها با کلاستر زئی (حذاقل

NIV ردیابی شده در دو گونه F. equiseti و F. poae نمودار ۳: منحنی تونسین

۰/۵ ml/min

وزن مانگگاری ۵۹۴ دیفیه (زن مانگ ۱۵ از ستون ۱۵ دیفیه).

۱۰ از این متمرکز شده‌اند که شامل زن‌های سنتز تریکوتیسین (Tri11, Tri4), P450 (Tri5), F. solani (Tri7, Tri13) (12). گونه F. solani که از عصاره نیز از بذر روناس جداسازی گردد و به علت پاتوژن انسانی نیز محصول می‌شود و نابایناری وجود چنین گونه‌ای همراه بذر روناس می‌تواند یک خطر بالقوه برای سلامت انسان و دام باشد (13).

۱۰ از این متمرکز شده‌اند که شامل زن‌های سنتز تریکوتیسین (Tri11, Tri4), P450 (Tri5), F. solani (Tri7, Tri13) (12). گونه F. solani که از عصاره نیز از بذر روناس جداسازی گردد و به علت پاتوژن انسانی نیز محصول می‌شود و نابایناری وجود چنین گونه‌ای همراه بذر روناس می‌تواند یک خطر بالقوه برای سلامت انسان و دام باشد (13).
فارغ‌الشکل فوزوریون در گیاهان مؤثرند و همچنین با جلوگیری از سنگین پروتونی در سلول‌های پوکاریوئیک برای سلامتی انسان و جویان ضرر نمی‌کنند (5). کاهش قدرت جوانشی یکی نشانه و تأثیر در کیفیت دانه به دلیل مایکوتکسین‌های تولید شده توسط قارچ‌های فوزوریون گزارش شده است (17). قابل توجه است که این مایکوتکسین‌ها در دانه‌های انبارشده سال‌ها به صورت پادار باقی می‌مانند (18، 19); بنابراین شناسایی این عوامل و توصیف تولیدی آنها می‌تواند کمک شایانی به سلامتی انسان و دام و تولید فراورده‌های عاری از سموم فارچی کند (19، 20). همچنین در این بررسی گونه‌های مختلفی از فوزوریون جداسازی گردید که آنها نیز پاتاسیل تولید مایکوتکسین را دارند ولی به مطالعاتی درباره وجود مایکوتکسین‌های دیگر گونه‌های فوزوریون در بدور روند صورت گیرد.

نتیجه‌گیری

این ولی این گزارش از قارچ‌های تولید‌کننده تریکوتین‌های همراه با دور رونس است. با توجه به وجود تریکوتین‌های نیوین در باور رونس و سمت به دو بنان این نوع تریکوتین برای انسان و دام باعث ایجاد پیش‌گیری جهت کنترل این عوامل قارچی و در نتیجه کاهش تریکوتین‌های تولیدی در مناطق مختلف کشت رونس صورت گیرد.

References


2- Namjouyan M, Shojaee H, Rezaee A. The final report of review and study of compare madder seed production and root madder and determine the best time for their harvesting in different climatic conditions of Fars state. Scientific and industrial research organization of Iran. Industrial Research Institute of Fars 1999.


17-Parry DW, Jenkinson P, MacLeod L. *Fusarium ear blight (scab) in small grain cereals*-areview. Plant Pathology 1995; 44: 207-238.


Detection of nivalenol synthesis gene in madder seeds infected by Fusarium species by Polymerase Chain Reaction (PCR)

Seyyed Mohsen Hosseininejad¹, Mustafa Abedi-Tizaki²*, Seyyed Alireza EsmailzadehHosseini², Fatemeh Kargar³, Kamal Sadeghi-Khomartaji²

¹ Student Research Committee, Golestan University of Medical Sciences, Golestan, Iran.
² Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran.
³ General Practitioner, Abarkuh Health Network, ShahidSadoughi University of Medical Sciences, Yazd, Iran.

Received: 3 Dec 2015 Accepted: 10 Dec 2016

Abstract

Introduction: The madder is one of the most important crops. This product maybe infected by Fusarium species that produces potentially fatal mycotoxins. The purpose of this current research was to identify trichothecene mycotoxins produced by Fusarium fungi associated with madder seeds using molecular and biochemical methods.

Methods: From different regions of Ardekan and Bafgh, sampling from madder seeds was done. Culture and purification of Fusarium isolates were taken place in specific media. Detection of fungi with the ability to produce trichothecenes mycotoxins such as nivalenol (NIV) through gene-specific primers for Tri13 by the polymerase chain reaction method (PCR) was performed. To confirm the NIV production potential, high performance liquid chromatography (HPLC) was applied.

Results: In this study, five Fusarium species were identified from madder seeds. The results showed that among Fusarium species isolated from madder seeds, from which F. poae and F. equiseti had the ability to produce NIV. The gene involved in NIV synthesis, Tri13, was detected in two species, F. poae and F. equiseti, so that all these isolates were identified as NIV producing type. The HPLC performance showed that all studied Fusarium species had the potential to produce NIV mycotoxin.

Conclusion: Tri13 gene, in F. poae and F. equiseti, has a crucial role in trichothecene production. Thus, the PCR method can be used in various detections of mycotoxin-producing fungi, which have the potential mycotoxin production.

Keywords: Madder, Seeds, Fusarium, Mycotoxin

This paper should be cited as:

*Corresponding author: Tel:09132743601, email:m.abeditizaki@gmail.com