بررسی تاثیر سلولهای بنیادی مشتق از بافت چربی بر کنترل قندخون در رتاهای دیابتی

علي هرادی، سارا هحودی، داریوش حويدی علوداری *

چکیده:

تحقیق: بررسی تاثیر سلولهای بنیادی مشتق از بافت چربی در کنترل قندخون در رتاهای دیابتی.

روش بررسی:

مطالعه از نوع تجربی-داخلی ای است. در این مطالعه سلولهای بنیادی بافت چربی حاصل از عمل لیپوسکشن خالص سازی شده و پس از شمارش توسط نمونه برای شناسایی و اثبات وجود سلولهای بنیادی توسط فلوسایتونتری بررسی شدند. تعداد 16 عدد رت نزد ویستار با وزن حدود 250-300 گرم توسط استرپتوزین با دوز 60mg/kg دیابتی شدند و بعد از آن به صورت تصادفی به دو گروه هشت تایی تقسیم شدند. گروه دیابتی کنترل تحت تابیر با نرمال سالین قرار گرفتند و گروه تحت درمان، سلولهای بنیادی جد شده از بافت چربی به تعداد 1×10^6 در درمان کرده. برای بررسی بهبود عملکرد در طول ۲۵ روز پس از پیوند سلولهای روز یکبار قند خون رها توسط دستگاه گلکوزمتر اندازه‌گیری شد.

نتایج: بررسی نتایج حاصل از فلوسایتونتری حاکی از بیان درصد بالایی در CD ۲۹ و CD ۹۰ در مورد سلولهای بنیادی مرانشیمی بافت چربی بود. همچنین بررسی نتایج خون رتاهای دیابتیک در طی دوره درمان نشان داد که در نتیجه کاهش معنی‌دار (p=1/1000) قند خون در رتاهای گروه دریافت کننده سلولهای بنیادی بافت چربی در مقایسه با گروه کنترل داشت.

نتیجه گیری: نتایج به دست آمده بعد از تأیید سلولهای بنیادی جدا شده از بافت چربی با استفاده از آنتی‌ژن‌های سطح سلولی و تزیق آن به رتاهای دیابتی به طور معنی‌داری قند خون را کاهش داد.

واژه‌های کلیدی: دیابت، سلولهای بنیادی، بافت چربی، گلکوز

1- استادیار. گروه بیوشیمی، دانشکده علوم پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی. 2- دانشیار. مرکز تحقیقات بیوشیمی و علوم تغذیه، دانشکده پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید.

hamidiad@mums.ac.ir

تاریخ دریافت: ۱۳۹۴/۵/۱۵، تاریخ پذیرش: ۱۳۹۴/۸/۲۰، تاریخ انتشار: ۱۳۹۴/۸/۲۰

Downloaded from jssu.ssu.ac.ir at 12:26 IRST on Wednesday December 11th 2019
دیابت نوعی اختلال متالیک است که در آن بدن توانایی استفاده از قند را دست می‌دهد. این بیماری به علت اختلال در ترشح انسولین و یا مقاومت به ترشح انسولین به وجود می‌آید و در هر دو حالت موجود گلزک خون (فیبرگلیسی) و دفع گلزک از لبه و ارتفاع کیفیتی می‌شود. سلول‌های بتنی بالغ به جزیره‌ای لانگرهایس پانکراس قرار دارند، سیستم ترشح انسولین هستند (12.1). مکانیسم تحریب سلول‌های بتنی در دیابت نوع ۱ و ۲ توسطدیابت‌های خودآمیختی و خود انتزاعی می‌باشد. در دیابت نوع دیگر، درون فعلی سلول‌های بتنی ناپدید می‌شود. این دیابت در دراز مدت دارای اهدافی‌هایی از قبیل نزول بی‌حیاتی و خواب‌نوربوی، ریزوبیاتی بیماری‌های قلبی-عروقی می‌شود.

حفظ توده سلول‌های بتنی پانکراس از عادل بین توزیع تکثیر و ابوتیون مسی بدن، تشکیل سلول‌های پانکراس، نباید و پانکراس خون‌سیستم یکدیگر تا از پانکراس ویژه‌پردازی و آوریل‌پردازی روش‌هایی جدید در درمان ریزوبیاتی ابزارهای سه‌سایه است. شواید نگریستیمی پیشنهاد نمایندگی آری و دیابتی در دراز مدت دارای اهدافی‌هایی از قبیل نزول بی‌حیاتی و خواب‌نوربوی، ریزوبیاتی بیماری‌های قلبی-عروقی می‌شود.

همچنین داشتن بتن سلول‌های بتنی پانکراس نورچراغ از پانکراس در درمان ریزوبیاتی و خواب‌نوربوی، ریزوبیاتی بیماری‌های قلبی-عروقی می‌شود.

نمونه‌گیری از مطالعه‌های پانکراس در درمان بیماری‌های قلبی-عروقی می‌شود. برخی از مطالعه‌های پانکراس در درمان بیماری‌های قلبی-عروقی می‌شود. برخی از مطالعه‌های پانکراس در درمان بیماری‌های قلبی-عروقی می‌شود.

در اعداد سن اندازه دیابت، وارد می‌شود.

دنامیک بیماری دیابت، وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکس و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرد در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.

سپارسیزی یکبندی و دایتریکs و کاربرd در درمان در بیماری دیابت وارد می‌شود.
تعادل سلول‌ها در هر میلی‌لیتر بالغ با ١٠٠٠ گرفته شد.

تعادل کل سلول‌ها در محلول سلول‌های در با ١٠٠٠ گرفته شد. حجم کل سوسپنسیون سلولی شناسایی و اثبات وجود سلول‌های بنیادی بایستی که تکنیک فلوسیتومنتری به یک جداسازی سلول‌های بنیادی قرار گیرد. به این منظور پس از تخلیص و جداسازی سلول‌ها، جهت تعیین نوع مارکرهای موجود در سطح سلول‌های بنیادی، یک آزمایش اولیه تشکل نشده بود.

در این سلول‌ها از این نوع از سوسپنسیون سلولی داخل آزمایشگاه دیده شد. با این منظور乳یت PBS شامل گردید.

CD ١٠٠ از آزمایشگاه (Invitrogen, USA)

انسانی حاوی رنگ ایزوتیوقاین فلورسیسین (FITC: Fluorescein isothiocyanate Isomer I) رنگ فیکورینی (RPE: RPhy Coerythin) (Invitrogen, USA) اضافه به نمود. ۳۰ دقیقه در دمای ۳۷ درجه سانتی‌گراد انکوبه شدند و با یافا برآورد شد که در فیکس گردیدند (151.16). در نهایت، ارزیابی نمونه با استفاده از دستگاه فلوسیتومنتری در با دمای شدت آنالیز PE کالری FL. برای انتخاب انتخاب می‌شد. نمونه با استفاده از ۱۰۰ میکرولیتر (لیتر) از ۱۴ و ۱۲ و مقایسه آنتی‌بادی از ۱۰۰ میکرولیتر کنترل هیبرنگ خود انجم گردید.

پروتئین و نگهداری جهای‌ها:

در این مطالعه از رت‌های صحرایی نیز به بلوه با وزن حدود ۱۵۰ گرم استفاده شد. رت‌های صحرایی از موسسه وکسن و سربیسیزی رازی مشهد به دست شدند. موجودی همگی در شرایط استاندارد حیوان تهیه شدند و ۱۲ ساعت تاریکی دسترسی کافی به آب و غذا و دمای ۲۵±۱ درجه
بررسی تاثیر سلول‌های بنیادی مشتق از بافت چربی

سانتی‌گراد و در هر قسم 4 حیوان در حیوان خان داسنگه علم پزشکی مشه‌هگرداری شدند.

گروه‌بندی حیوانات

برای انجام این مطالعه، راتها در دو گروه 8 تا 12 رات به هر گروه کنترل تحت درمان با نرمال سالین و گروه دیگر رت‌های دیابتی شده با استرپتوژوتین و درمانشهد با سلول‌های بنیادی جدا شده از بافت چربی در نظر گرفته شدند.

ایجاد مدل حیوانی دیابت:

جهن دیابت در رت‌ها، استرپتوژوتین (Stereptozotocin) (Enzolife sciences, USA) با دوز 400 mg/kg در سرم فیزیولوژی سرد خژه و به صورت تازه STZ استفاده شد. تزریق دارو با در بکریه حجم تزریق خیلی زیاد.

نتایج:

بررسی نتایج فلزیومتری سلول‌های بنیادی منازلی:

نیاز به مطالعه بعد از استخراج سلول‌های بنیادی بافت چربی جهت تاپید این سلول‌های درمان بیماران که سلول‌های بنیادی استرپتوژوتین مشتق از بافت چربی (CD90) و RPE (R. Phy Coerythrin) با استفاده از فلزیومتری مورد بررسی قرار گرفت.

پروتئین فلزیومتری نمودارهای گرفته شده از بافت نشان می‌دهد که سلول‌های بنیادی منازلی به‌طور مثبت با CD90 و RPE هستند. در مجموع با فلزیومتری مشتق از بافت چربی که از این نتایج استفاده گردید.

در مجموع، نتایج حاصل از این مطالعه نشان داد که سلول‌های بنیادی منازلی به‌طور مثبت با CD90 و RPE هستند و می‌توانند در درمان دیابت و بهبود منابع خونی به کمک کنترل تزریق گردید.

صدا به سوس و النازه همهم، آبان 1394

مجله دانشگاه علوم پزشکی و خدمات بهداشتی-درمانی شهید صدوقی یزد
شکل ۱: نتایج بررسی گیرنده CD۹۰ در سلول‌های بنیادی مزاتشیمی بافت چربی

نمودار نقشه‌ای سلول‌های معین شده که نشان‌دهنده پراکندگی بالای آنها در مربع پایین و چپ این گروه کنترل (A) نمودار نقشه‌ای سلول‌های معین شده که نشان‌دهنده یک گروه کنترل CD۹۰ بالای سلول‌های بیابان کننده سلولی (B) هستوگرام مقایسه‌ی نسبی با سلول‌های تکان‌کننده بیابان کننده سلولی (C) هستوگرام مقایسه‌ی نسبی با سلول‌های گروه کنترل.

پراکندگی بالای (٣/٩٧٠٪ آنها در مربع پایین و راست است. A) هستوگرام مقایسه‌ی نسبی با سلول‌های بیابان کننده سلولی (٣/٩٧٠٪ آنها در مربع پایین و راست است. B)

تبلای (٣/٩٧٠٪ آنها در مربع پایین و راست است. C)

بررسی بیان گیرنده سطحی کازوگ‌ها با FITC (Fluorescein Isothiocyanate)

CD۹۰ سطحی جدید شده از بافت چربی گیرنده سطحی CD۹۰ را به طور معنی‌داری بیان کرده است. شکل ۲.

شکل ۲: نتایج بررسی بیان گیرنده CD۹۰ توسط سلول‌های بنیادی مختلف صورت گرفته شده از بافت و نشان‌دهنده اینکه CD۹۰ از مربع پایین و چپ (گروه گیت شده) که نشان‌دهنده یک گروه کنترل (A) نمودار نقشه‌ای سلول‌های معین شده که نشان‌دهنده یک گروه کنترل CD۹۰ بالای سلول‌های بیابان کننده سلولی (B) هستوگرام مقایسه‌ی نسبی با سلول‌های بیابان کننده سلولی (C) هستوگرام مقایسه‌ی نسبی با سلول‌های گروه کنترل.

تبلای (٣/٩٧٠٪ آنها در مربع پایین و راست است. A) هستوگرام مقایسه‌ی نسبی با سلول‌های بیابان کننده سلولی (٣/٩٧٠٪ آنها در مربع پایین و راست است. B)

تبلای (٣/٩٧٠٪ آنها در مربع پایین و راست است. C)
بررسی تاثیر سلول های بیشماری هشتق از بافت چربی

بررسی تاثیر حاصل از تزریق سلول های بیشماری بافت چربی بر میزان گلکور در رئه های دیابتی در طی مدت زمان ۲۵

جدول ۱: توزیع میزان فند خون رده در زمان های مختلف به تفکک گره درمانی نتیجه به صورت ...

<table>
<thead>
<tr>
<th>بارامتر</th>
<th>فند خون (g)</th>
<th>وزن (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز پنجم</td>
<td>۲۵۵±۲۳*</td>
<td>۲۷۵±۲۳.۱۲</td>
</tr>
<tr>
<td>روز دهم</td>
<td>۲۵۲±۱۲*</td>
<td>۲۱۴±۱۴</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>۲۶۴±۱۴*</td>
<td>۲۳۷±۲۳</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>۲۴۸±۲۴*</td>
<td>۲۱۲±۲۴</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>۲۴۸±۳۵*</td>
<td>۲۱۶±۳۵</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>۲۴۸±۱۸*</td>
<td>۲۱۷±۱۸</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>۲۴۸±۱۸*</td>
<td>۲۲۲±۲۲</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>۲۴۸±۱۸*</td>
<td>۲۱۶±۲۱</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>۲۴۸±۱۸*</td>
<td>۲۲۲±۲۲</td>
</tr>
</tbody>
</table>

بحث

دیابت شیرین نوعی بیماری متاپولیک است که به علت اختلال در ترجمه استروئید و با مقاومت بافتی نسبت به آن به وجود می آید. دیابت شیرین به نوع پیکلاپیایی مشخص می شود. در اولین مرحله سلول های مناسب به بدن بیمار وارد می شوند که این سلول ها می توانند از بدن خود فردا (پیوند انتوگ) و یا بنده فردا (پیوند دورگارگاز) باشند. بهترین روش وارد کردن سلول های تزریق سیستمیک آنها به داخل جریان خون می باشد. فرض بر آن است که سلول ها بعد از ورود به جریان خون از جاده خروق عبر کرده و وارد بافت های صمدی بهره می شود. در نتیجه تأثیر ریز محیط ((Homing)), سلول های پایه در ارگان صدمه دیده می شود. تحت تأثیر ریز محیط (Niche) جدید خود به سلول های بافت مورد نظر تمایل بافت و در نهایت از ناحیه مختلف بافت از صدمه دیده می شود (۱۱۲).

میانگین وزن رئه دیابتی شده همانطور که انتظار می رفت باعث معنارز دیابت داد به طوریکه در گره گوشتی در روز صفر از (۲۶۷±۱۸) به (۲۳۵±۱۸) در روز پنجم و...
نجم رسف. همچنین در گروه‌های تیمار شده با سولو‌های بین‌ایدی بافت چربی کاهش وزن از روز سفر(272±248) تا روز پایان‌دار(248±19) دیده شد. این مطالعه Taha مقدار 140	imes 10^4 عدد سلول بین‌ایدی جدا شده از بافت چربی انسانی را به رهاس انسانی شده نوع II تزریق کردن. این مطالعه از کاهش کنن روی طول دورة درمان بود (22). هم‌اکنون در سال 2009 و Yang zhao. بنابراین، اگرچه هنوز از کاربردهای کلینیکی سولو‌های بین‌ایدی در درمان دیابت دور هستم، نتایج آزمایشگاهی تا حدودی توجه بخش درمان می‌باشد. پایین‌تر سلول‌های بین‌ایدی در درمان این بیماری هنوز در راه‌آهن اگزین است و تکنولوژی‌های موجود در مهندسی سلول‌های بین‌ایدی به سمت سلول‌های ترشح کننده انسباین، در این مرحله خواهند کرد. اطلاعاتی که از پیچیدگی سلول‌های بین‌ایدی، تکلیف سلول‌های بنا و عملکرد سلول در شرایط فیزیولوژیک و بیولوژیکی به دست می‌آید نیز در این زمینه کم‌سیاری خواهد نمود. امیدوارم که پیشرفت‌های آنی چراغ امیدواری را در دل بیماران روش‌نامه‌دار

نتیجه‌گیری

امروزه با توجه به اهمیت دیابت در زندگی افراد که در حالة حاد همراه با مشکلات بین‌ایدی، محقق‌ها و برخی مشکلات دیگری می‌باشد و همچنین به علت اینکه بار مالی و جمعه‌های سپار سنگین است، یافته‌های درمانی غیرتهاجمی مانند استفاده از سلول‌های بین‌ایدی می‌تواند کمکساز برای در این زمینه باشد. بنابراین در این تحقیق سعی شد که کاربرد سلول‌های بین‌ایدی بافت چربی که در بر معرفت جداسازی راه و قابلیت تبدیل به سلول‌های چربی دارند در درمان رت‌های دیابتی مورد آزمایش قرار گیرد. در این تحقیق مشاهده شد این سلول‌ها قادرند بعد از تزریق به رتهای بین‌ایدی و همکاران

جله دانشگاه علوم پزشکی و خدمات بهداشتی-درمانی شهید صدوقی بردگان

دور بیست و سوم، شماره هشتم، آبان 1394
References:

4- Yiu KH, Tse HF. Specific role of impaired glucose metabolism and diabetes mellitus in endothelial progenitor cell characteristics and function. Arteriosclerosis, thrombosis, and vascular biolo 2014; 34(6): 1136-43.

Effect of Adipose tissue-derived Stem Cells on the Control of the Blood Glucose Level in Diabetic Rats

Moradi A (PhD)¹, Mohammadi S(MSc)², Hamidi Alamdari D(PhD)³

¹,² Department of Biochemistry & Molecular Biology, Faculty of Medicin, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
³ Biochemistry and Nutrition Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Received: 19 Apr 2015 Accepted: 6 Aug 2015

Abstract

Introduction: Mellitus Diabetes belongs to a group of metabolic diseases, which is caused due to the disturbance in insulin secretion, destruction of beta cells, auto immune reasons, necrosis as well as insulin resistance. Stem cells therapy has recently been suggested as a treatment method of Diabetes. Since adipose tissue-derived stem cells present wide availability, easy access, high proliferation and less immunological rejection, the present study aimed to investigate their effect on the control of the blood glucose level.

Methods: In this experimental-interventional study, adipose tissue-derived stem cells, harvested from the liposuction surgery were purified and after being counted by neubauer lam, were evaluated via flow cytometry in order to identify and approve the existence of stem cells. Sixteen male wistar rats weighing about 250-300 gr, induced diabetes by streptozotocin (60 mg/kg), which were divided randomly into two groups of eight. Group 1 (Diabetes control) received the normal saline treatment, and group 2 (treatment) received 1.5x10⁶ adipose tissue-derived stem cells. In order to evaluate the improvement process, blood glucose level of rats was measured by glucometer every day for a period of 25 days after the tissues transaction.

Results: The results of flow cytometry indicated high percentages of CD29 and CD90 in mesenchymal adipose tissue-derived stem cells. The blood glucose level of diabetic rats revealed a significant reduction (P < 0.001) in blood glucose level in the rats treated with derived adipose tissue-derived stem cells in comparison with the control group.

Conclusion: The findings of the present study revealed a significant decrease of blood glucose level after confirmation of stem cells isolated from the adipose tissue using cell surface antigens and its injection into diabetic rats (P <0.001).

Keywords: Adipose tissue; Diabetes; Glucose; Stem cells

This paper should be cited as:

*Corresponding author: Tel: 051182022505, Email: hamidiad@mums.ac.ir