بررسی آزمایشگاهی میزان ریزشنت پراکتهای ارتودنسی باندشه‌های کامپوزیت بیس سایلوران

عبدالرحیم داوری، صغری یاسایی، اُلیمپا دانش کاظمی، آریا ناج آبادی

چکیده

مقدمه: ریزشنت کامپوزیت اتصال دهه‌ای براکت ارتودنسی در دوره دندانی، یکی از مشکلات درمان‌های ارتودنسی است که باعث ایجاد مارچینال گو و ریزشنت از فضای بین دندان و کامپوزیت می‌شود. ریزشنت باعث نفوذ باکتری‌ها و مایعات خونی و اسید و سطح کلینیکی در طول درمان ارتودنسی است. همچنین مطالعات اندکی در این زمینه انجام شده است. هدف از این مطالعه مقایسه ریزشنت کامپوزیت بیس سایلوران و کامپوزیت بیس مشکلات در باند براکت‌های ارتودنسی بود.

روش بررسی: ۲۰۰ عدد دندان پرینت و دوگروه تحقیقی شدند. درگروه اول، ۱۵ براکت ارتودنسی با کامپوزیت بیس سایلوران و در دیگر گروه ۱۵ براکت ارتودنسی با کامپوزیت بیس مشکلات باند دندان. سپس دندان‌ها در آب نگهداری شدند و به مدت ۵۰۰ ثانیه تحت ترموسیلیک ۵ و ۶۵ درجه فرآیندگر تبدیل شدند. سپس دندان‌ها با اک ناخن مهر و موم شدن و بعد نمونه‌های به مدت ۴۴ ثانیه‌تر در محلول فوشن ۳ درصد قرار گرفتند و سپس با استفاده از دیسک محیط و دستگاه برز در هر دو گروه، شکستگی از دندان‌ها در شرط زده شد و در نهایت نمونه‌ها رنگ داده شدند.

مورد تجزیه و تحلیل فرآیند Mann-Whitney و Fisher exact و آزمون SPSS نتایج: نتایج معمولی داری در ریزشنت در بین گروه‌ها وجود داشت. میزان ریزشنت پراکتهای باند باند به کامپوزیت بیس سایلوران به طور معنی‌داری کمتر از میزان ریزشنت پراکتهای باند باند به کامپوزیت بیس مشکلات (p < 0/05) بود. همچنین میزان ریزشنت بین براکت-اده‌پر و طور معنی‌داری داری بیشتر از میزان ریزشنت بین اده‌پر-بیس (p < 0/05).

نتیجه‌گیری: نتایج مطالعه حاضر که بنا کامپوزیت‌های بیس سایلوران ریزشنت کمتری را برای اتصال براکت‌های فراهم کرده و می‌توان برای باند براکت‌های ارتودنسی استفاده کرد.

کلید واژه‌ها: ریزشنت، براکت، سایلوران، مشکلات، کامپوزیت
مقدمه

از زمانی که bonocore در سال 1995 تکنیک پایادینی و استاد اجرای مکرر کرد، استفاده از تکنیک اسید اچ و کمپوژیت مرسوم‌ترین روش جهت تبدیل براکت‌های ارتودنسی به میانی دندان‌ها شد(۱). این روش دارای مزايا زیادی است. مانند: کاهش اختلال دندانگیری بکار گرفتن، تحریک لنگه‌کمتر، رعایت بهداشت آسان‌تر و ظاهر زیبای است. اما این روش دارای یکسری معایب از جمله انقباض ناشی از پلیمرپراشیون می‌باشد که موجب ایجاد زخم و توده می‌شود(۲). از نظر مشکلات این می‌توان به تغییر رنگ، مقاومت سایشی انکد و ضریب انعطاف حرارتی خلیف کامپوزیت‌ها(۳) تا ۶ برآبیر نشوا دندان، انتشار کم‌شو، مطلوب‌سازی نشایده است که کامپوزیت زرین‌های لاتیمی‌رگ به سمت منبع نور پلیمرهای می‌شود. ۵ راهکار از پلیمرهای کنترل، دستگاه‌ها و سریال‌های نشسته به عنوان استفاده جهت تثبیت هر چه قدرتر مواد به نشوا دندان‌ها است. توسعه و کاربرد مواد total etch و انواع self-etch انتشار دهنداری این نواحی این مواد و ایجاد تغییرات metabolیک در آنها از جمله رشد فیبر، واژگونی جهت گوناگونی در کار کردن فیبر، واژگونی که آنها به صورت لایه‌ای متعدد، تلاش‌های مختلفی که به موثرتر کردن این مواد کمک می‌کند(۴). انتخاب بینی پلیمرپراشیون مواد زرینی سبب عدم تطلیق مارچینی مشابه حتی در صورت استفاده صحیح از سیستم‌های واحدی می‌شود(۵-۷). از آنجا که واژگونی فیبری کلاس با عنوان راهی برای کاهش انقباض پلیمرپراشیون تا جایی که امکان‌پذیر بود، انجام شده است. راه بی‌توجهی باید در تهیه زرین‌های جدید یافته شود که انتخاب کم در کتور با عدم انقباض را نشان می‌دهند(۸).

بتی‌بیست و سوم مبارکه ششمی، شهریور ۱۳۹۲

مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید هسینی برز
در سال 2011 توانایی ریزشی 250 mW cm2 از آزمایشگاهی بررسی ریزش چند که آیا آزمایشگاهی سلولاری از نظر ریزش در باند یا بهداشتی مناسب می‌باشد. بنابراین در این تحقیق 120۱۷۱۶ درمان‌های مختلفی را به دلیل برپویشدن خارج نشته‌های شریان مو، بیشترین ریزش را می‌تواند بپذیرد به طور معنی‌داری در گروه سلولاری کمتر (بوده) ۱۶۱۷۷۱۷۰۰ (p<0.05).

از آنجا که نتیجه پرورش‌های مختلفی را در رابطه با کلیه و کارایی کامپوزیت رزینی یا در ترکیب، منطقی و زیبایی و باند برپویشی از آزمایشگاهی سلولاری است، این روش تحقیقی حاضر به مقایسه تأثیری گزینه بر ریزش از مقداری ملی در گروه سلولاری ۹۰ پیوسته و برپویشی از آزمایشگاهی سلولاری می‌تواند با نتایج‌های قبلی در تحقیق است. در این مطالعه تجاری، آزمایشگاهی ۳۰۰ عدد سلولاری برپویشی انسان که برای اهداف ارتودنسی کشیده شده و عاوان و باند برپویشی برای مزیتات سلولاری کمتر. به‌طور کلی در این مطالعه از دو نوع ادغامی، پسی سلولاری (پرپل، اسپای، آمریکا) و پیس سلولاری (آمریکا) استفاده شد. این برای ارتودنسی می‌تواند با نتایج انجام شده است.

روش برپویشی در این مطالعه تجاری-آزمایشگاهی ۳۰۰ عدد سلولاری برپویشی انسان که برای اهداف ارتودنسی کشیده شده و عاوان و باند برپویشی برای مزیتات سلولاری کمتر. به‌طور کلی در این مطالعه از دو نوع ادغامی، پسی سلولاری (پرپل، اسپای، آمریکا) و پیس سلولاری (آمریکا) استفاده شد. این برای ارتودنسی می‌تواند با نتایج انجام شده است.
برای کامپوزیت با بیس سایلورون (p90) از پراپارامیدینگ مخصوص (3M) استفاده و بعد از آرامی و به مدت 10 ثانیه با هوا خشک شد و به DEMI(Kerr USA) شدت ۱۰۰۰ کیور شد. سپس با پایندنیگ مخصوص به صورت یک لایه بر روی پراپارامید زده و با یک پوسته هوا به مدت 5 ثانیه نازک و به مدت ۲۰ ثانیه با دستگاه لايت کیور می‌شود.

کیور صد ۵۰۰۰ DEMI(Kerr USA) سپس در هر گره کامپوزیت مربوطه را روی پراکت گذاشته و پراکت با شطری ملامس در سطح باکل دانه‌های قادر داده شد.

در ادامه کامپوزیت اضافه اطراف لبه‌های پراکت تمیز گردید. سپس در چهار جهت مزیل، دیستال، اکلوزال و چنگال‌های کدام به مدت ۱۰ ثانیه کیور شد (۱۹-۱۷). سپس ریشه دانه را در داخل استوانه فازی تولید به قطر ۱/۵ سانتی‌متر و ارتفاع ۳ سانتی‌متر محوطه آکریل (آکروپارس) طوله‌ی مات نشکته که تا ۱ میلی‌متر زیر CEJ در داخل آکریل قرار گرفت. این کار به دلیل گرفت‌تای در نظر گرفت‌شدن. قرار گرفت دانه‌ها در داخل اکریل به نحوی بود که ناحیه مسطح پراکت کاملاً تغییر با پرداخت افق قرار گیرد. این کار توسط دستگاه سرپرست با ایتالیزور مستقیم قبل از ساختن نهایی آکریل انجام گرفت.

سپس عمل خرازی بین دوج جراح‌پز ۵ درجه سانتی‌گراد و ۰ درجه سانتی‌گراد به میزان ۵۰۰ سیکل انجام گرفت. بیدن ترتیب که دانه‌ها به مدت ۱۰ ثانیه در آب ۵ درجه سانتی‌گراد و ۵۰ ثانیه در آب ۶۵ درجه سانتی‌گراد قرار داده شدند. زمان تاخیر ۵ ثانیه توسط دستگاه ترمومسکالین (وافله، ایران) تحت شکل حرارتی قرار گرفتند. سپس نمونه‌ها در انکوباتور در دمای ۷۲ درجه سانتی‌گراد قرار گرفتند و بعد از یک هفته نمونه‌ها به مدت ۲۴ ساعت در محلول فوشین ۵۰ درصد و در دمای اتاق قرار گرفتند. بعد از ۲۴ ساعت دانه‌ها از محلول خارج شده و با آب شسته و زنگ سطحی آن با مقادیر تمیز شد. سپس دانه‌ها مجدداً شسته و در بلوک آکریلیک زنی قرار گرفتند. سپس با استفاده از دیسک مخصوص و دستگاه برش (وافله، ایران) در هر دوی دانه‌ها دو برش طولی در مسیر باکولینگول در مزایا
نتایج
بررسی نتایج به‌دست‌آمده، نشان داده‌است که توزیع فراوانی و وضعیت ریپزیش در گروه‌های مورد مطالعه در جدول ۱ نشان داده شده است. نتایج آزمون Mann-Whitney بر حسب نوع کامپوزیت معنی‌دار است، و در کامپوزیت بسی سایلوران به طور معنی‌داری کمتر است (p<0.۰۷). همچنین نتایج آزمون Mann-Whitney نشان داده که درجات ریپزیش بر حسب سطح باند شونده و هم معنی‌داری تابع به ریپزیش بین براکت-اده‌زیو بی‌بیشتر از میزان ریپزیش بین ادی‌زیو-مینا است (p=0.۰۵). (جدول شماره ۱).

جدول ۱: تعیین وضعیت بیمار ریپزیش در گروه مورد بررسی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>احراز معیار ذبیحگان</th>
<th>میانه</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح باندشده</td>
<td>کامپوزیت و مینای دندان</td>
<td>۱۱/۴۰±۱/۱۳</td>
<td>۰/۰۷</td>
</tr>
<tr>
<td>کامپوزیت و براکت ارتودنسی</td>
<td>۱۱/۳۴±۱/۰۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نوع کامپوزیت</td>
<td>کامپوزیت بسی سایلوران</td>
<td>۲/۹۲±۸/۸</td>
<td></td>
</tr>
<tr>
<td>کامپوزیت بسی سایلوران</td>
<td>۲/۹۳±۸/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESILIENCE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mann-Whitney test

همان‌گونه که در جدول ۲ مشاهده می‌شود، درجات ریپزیش بر حسب شدت (p<0/۰۷) و با توجه به جدول ۲ درجات ریپزیش بر حسب سطح باند شونده به وسیله Fisher exact test بر حسب نوع کامپوزیت به وسیله Fisher exact test آزمون قرار گرفت و اختلاف معنی‌داری مشاهده نشد (p=0/۰۵).

جدول ۲: توزیع فراوانی وضعیت ریپزیش در گروه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>جمع کل</th>
<th>۰</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>کامپوزیت بسی سایلوران</td>
<td>۱۱۱/۱۵</td>
<td>۱۲/۲۳</td>
<td>۷/۴۶</td>
<td>۱/۷۹</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>P90</td>
<td>۱۱۱/۱۵</td>
<td>۱۲/۳۳</td>
<td>۷/۵۳</td>
<td>۱/۸۳</td>
<td>۱/۹۳</td>
<td>۱/۹۳</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>کامپوزیت بسی سایلوران</td>
<td>۱۱۱/۱۵</td>
<td>۱۲/۲۳</td>
<td>۷/۴۶</td>
<td>۱/۷۹</td>
<td>۰/۹۳</td>
<td>۰/۹۳</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>RESILIENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Fisher-exact test. P-value=۰/۰۷
<table>
<thead>
<tr>
<th>جمع کل</th>
<th>تعداد (درصد)</th>
<th>تعداد (درصد)</th>
<th>تعداد (درصد)</th>
<th>تعداد (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه</td>
<td>6 (100%)</td>
<td>12 (200%)</td>
<td>18 (300%)</td>
<td>24 (400%)</td>
</tr>
<tr>
<td>گروه کامپوزیت و میونای دندان</td>
<td>9 (100%)</td>
<td>15 (200%)</td>
<td>21 (300%)</td>
<td>27 (400%)</td>
</tr>
<tr>
<td>گروه کامپوزیت و براکت ارتودنسی</td>
<td>3 (100%)</td>
<td>5 (200%)</td>
<td>7 (300%)</td>
<td>9 (400%)</td>
</tr>
</tbody>
</table>

*Fisher-exact test p-value=0.1

نتیجه‌گیری

دانش‌آموختگان در ارتودنسی جنگ فقط یک فک از کامپوزیت در زیر براکت بکار می‌روند. انتخاب پلیمرپاسیون و رایگونی حاصل از آن در اهدوپیون ارتودنسی ممکن است با نظر می‌رسد. روی‌ها متفاوتی برای براکت‌های رایگونی وجود دارد که ساده‌ترین و رایگونی آن روش نفوذ به‌وسیله سپس برش دندان و براکتی نمونه‌ها در زیر میکروسکوپ نوری است. در این مطالعه از این روی نیز استفاده شد.

دانش‌آموختگان در ارتودنسی gladwin و Baghy عواد پویسوبیک و واسیب در زیر براکت‌ها شد. از دیدگاه ارتودنسی، رایگونی باعث ایجاد ضایعات می‌شود. پتانسیل تغییر در حالت میکروکوپ و کیفیت پیک شکل کلینیکی در استفاده از اپلینس‌های تابع است. نواحی اپلینس‌های رایگونی بین براکت و کامپوزیت ممکن است موضوع مهمی برای موافتی بالینی درمان و براکت ارتودنسی باشد. همیشه رایگونی بین عاج و اهدوپیون اتفاق می‌افتد. با غلبه بر مطالعات انجام شده اهمیت رایگونی می‌باشد که به‌وسیله Arhun و همکاران در سال 2006 رایگونی زیرکامپوزیت تغییری در شکل و سرمایی باندنش توسط سیستم‌های اهدوپیون ممکن است باعث کاهش است. این سیستم به‌وسیله میکروسکوپ نوری از 500 میکرولوی و آنتی‌بکتریال را بروز کرده و از 40 دندان برورنی ناش ناشی شده است. راهبردهای تعریف شده است. (28) فرزندان بین‌بزرگتر از براکت‌های سرمایی داشتند. (28) همچنین مطالعه 2009 Mirkoli نشان داد که تغییر براکت‌های ارتودنسی با درجه شش با تکنیک مجهز دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی‌فر برد.
پیبرسی ارتودنسی با کلاته کلیدی "silorane", "bracket" و "microleage" با "orthodontics" و "microleage" نتیجه یک مقاله از و Buyk همکاران یافته شد. نتایج این مطالعه با تحقیقات و Buyk همکاران هم‌خوشی دارد. و لیًا میزان برکت‌های ارتودنسی باقی شده با کامپوزیت بیس سابلوران و
کامپوزیت را مورد بررسی قرار دادند. در حالی که در مطالعه حاضر کامپوزیت بیس سابلوران با مقداسه گردید. در
نتیجه میزان برکت‌های باقی بند شده با کامپوزیت بیس Transbond Xt (3M unitek)
کامپوزیت با کامپوزیت، تمرکزی از 0 درصد تا 0 درصد مورد استفاده شده و در این تحقیق رنگ فوشن 0 درصد مورد استفاده قرار گرفته است. فوشن بازی برکت‌پر درنگ رنگ مورد استفاده بای ارزیابی برکت‌های است و این رنگ با عاج پوسیده می‌بودند و نتایج را به صورت حضور پویسی در ندان مخودای می‌کرد. این ویژگی فوشن برای کف پوسیده مناسب است (44-46). تفاوت در نوع رنگ انتخاب شادی دیل اختلاف بین دو مطالعه بوده است. البته لازم به ذکر است "Buyk" که در روش کارکردن و همکاران، نمونه‌ها بلئاباخته بعد از
مورد ارزیابی قرار گرفتند. در حالی که در مطالعه bonding عضد نمونه‌ها بعد از bonding حاضر نمونه‌ها بعد از مدت 50 سیکل در دستگاه ترمودیاکلین بین 5 تا 55 درجه سانتی گراد و سپس به مدت یک هفته در اگوش‌بازی در دمای 37 درجه قرار گرفتند. البته در برخی مطالعات گازرس شک که انجام ترمودیاکلین با کاهش قدرت بهبود و یا افزایش برکت‌های می‌شود (30-33). برخی
مطالعات هم ارتباط بین افزایش تعداد سیکل حرارتی با افزایش برکت‌های رده کردن (27-30). از اینجایی که در محیط
دهان استرس‌های حرارتی به صورت پی در پی در سطح بین
دهان و روز اجداش می‌شود، برای شیپه‌سازی هر چه بیشتر
در بیست و سوم شماره ششم شهروند 1394

مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید سدیفی بروجرد
اده‌زیو رخ می‌دهد، مقدار کمتری از ادزیو بر روی میان باقی می‌ماند و امکان اسپب به مینا در طی برداشت نباتقیمانده ادزیو کاهش می‌یابد. اما احتمال آسپب به مینا در طی دباندینگ افزایش می‌یابد که خطر آسپب به مینا در طی دباندینگ بیشتر از میزان اسپب هنگام برداشت با فرز است(۴۰).

نتیجه‌گیری

درجات رنگ‌نشت در کامپوزیت کمتر از سیلورانه (silorane) درجات رنگ‌نشت در کامپوزیت میان و کامپوزیت براکت بین دو گروه از نظر آماری معنی‌دار بود.

سیاستگرایی

این مقاله حاصل پایان‌نامه تحقیقاتی مصوب معاونت محترم تحقیقات و فناوری دانشگاه علوم پزشکی شهید صدوقی برد به شماره ۳۱۰۶ می‌باشد که بدن و سلبه قدردانی می‌گردد.

References:

29- Yagci A, Uysal T, Ulker M, Ramoglu SI. Microleakage under orthodontic brackets bonded with the custom base indirect bonding technique. Eur J Orthod 2010; 32(3); 259-63.

30- Hamamci N, Akkurt A, Basaran G. In vitro evaluation of microleakage under orthodontic brackets using two different laser etching self-etching and acid etching methods. Lasers in Medical Sci 2010; 25(6); 811-16.

38- Uysal T, Ulker M, Ramoglu SI, Ertas H. Microleakage under metallic and ceramic brackets bonded with orthodontic self-etching primer systems. Angle orthod 2008; 78(6); 1089-94.

46. Yasini A, Rezvani A. **Compare the microleakage of composite restorations class Vglas Ionomer after the application of ultrasonic scaling Zstgah.** J Dent Tehran Uni Med:1996.
In vitro Evaluation of Microleakage of Orthodontic Brackets Bonded Using Methacrylate and Silorane Base Composite

Davari A(DDS, MS)¹, Yassaei S(DDS, MS)², Daneshkazemi AR(DDS, MS)³, Tajabadi Z(DDS, Student)⁴

¹,³ Department of Operative Dentistry, Member of social determinant of Oral Health Research Center, school of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
² Department of orthodontic Dentistry, Member of social determinant of Oral Health Research Center, school of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
⁴ Student of dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Received: 5 Apr 2015 Accepted: 4 Jul 2015

Abstract

Background: One of the orthodontic treatment problems, which causes marginal gaps and microleakage between tooth and composite is microleakage of composite bonding of orthodontic brackets. The microleakage formation permitting the passage of bacteria and oral fluids, which may cause white spot lesions under the brackets surface area. This is a clinical problem during orthodontic treatment. Few studies have been conducted in this area. The aim of this study was comparison of microleakage of composite silorane base and methacrylate base composite in orthodontic brackets.

Methods: Thirty human premolar were collected and divided into 2 groups. In group 1, 15 orthodontic brackets were bonded using silorane base composite, in group 2, 15 orthodontic brackets were bonded using methacrylate base composite. Then the teeth were kept in water and thermo cycled(500x, 5-55°C). Specimens were further sealed with nail varnish, stained with 5% basic fuchsin for 24 hours. Then, all teeth sectioned and dye penetration rate were examined by an esterimicroscope, and scored 0 to 3 for marginal microleakage for the bracket-adhesive and adhesive-enamel interfaces. The data collected analyzed with SPSS16 software, and fisher exact and Mann Whitney tests.

Results: Microleakage values were lower in silorane composite than in the methacrylate group, and this difference was found to be statistically significant(P-value =0.03). Also, the rate of microleakage between adhesive-bracket than adhesive-enamel interface was meaningful(P-value=0.025).

Conclusions: The results of the current revealed that silorane-bass silorane-base composite provided low microleakage for orthodontic brackets, for this reason, it could be used it for bonding brackets.

Keywords: Micro leakage; Bracket; Silorane; Methacrylate; Composite

This paper should be cited as:

*Corresponding author: Tel: +989135150861, Email: zahrataj.1393@gmail.com