ظرافی و ساخت نانولیپوزوم آهسته رهش حاوی داروی گیاهی ضدسرطان سیلیبینین (نانوفاینتوزوم)

محمدرضا اوجی اردبیلی، قاسم عمومایی، سید مهدی رضایت، عظیم اکبرزاده، بهمن ابراهیمی

چکیده
مقدمه
نانولیپوزوم، کپسول‌های نانو‌درمی کروی با گوش شیمیایی می‌باشد که به عنوان حامل‌های داروی برای بهبود رسانش عوامل درمانی بیماری متعادل قرار می‌گیرند. این تحقیق به منظور افزایش اثرات دارویی گیاهی سیلیبینین از طریق بارگذاری این دارو در نانولیپوزوم یکی از داروهای ضدسرطان است که خاصیت ضدئوستاتیک آن در کاهش همپا indole ناشی از پیدایش سلنیبین در N-nitrosodimethylamine نانولیپوزوم فعالیت پوزیتیویکی آن را بهبود بخشیده و پایدار سیلیبینین را در حوزه درمانی می‌دهد.

روش بررسی: زنبور‌های تک لایه که کرچک حامل سیلیبینین ایفا می‌نماید در فسفر بندی شال، فسفولیپید، DPPC، كلسترول، فسفولیپید با نسبت مولی 7: 3/0 و ترکیب فلورست القه 46، DSPE-MPEG2000 به عنوان امکان لوله تولید گردیدند. همچنین انتخاب نانولیپوزوم‌ها، پاناسیت رنا، میزان بارگذاری و منحنی رهایش دارو بعد از تولید نانولیپوزوم‌ها از دستگاه دی‌اکسید نشان داد. نتایج: میانگین قطر نانولیپوزوم‌ها 3/26 نانومتر بود. با سطحی نانولیپوزوم حامل دارو، 23/65 نشان داده شد. بارگذاری ترکیب سیلیبینین در حوزه 23/7% به دست آمد.

نتیجه‌گیری: میزان این تحقیق نسبت به پژوهش‌های مشابه پیشین روي داروی سیلیبینین، در بارگذاری این دارو در حوزه لیپوزومی با منحنی آهسته رهش با اندامی زیر 50 نانومتر می‌باشد که در بهبود پایداری سیلیبینین به منظور رسانش به سلول‌های سرتانی کم کاربرد خواهد داشت.

واژه‌های کلیدی: نانولیپوزوم، کپسول‌های نانو، سرتان کبید، سیلیبینین

1- دانشجوی دکتری نانوتکنولوژی، مرکز پژوهشی فناوری های نوین در مهندسی علم زیستی، دانشگاه تهران، تهران، ایران
2- دانشیار گروه مهندسی بیوتکنولوژی و داروسازی، مرکز پژوهشی فناوری های نوین در مهندسی علم زیستی، دانشگاه تهران، تهران، ایران
3- استاد گروه فیزیولوژی و رشد پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران، تهران، ایران
4- استاد گروه فیزیولوژی و رشد پزشکی، استادیوم پاسور تهران، دانشگاه تهران، تهران، ایران
5- استادیوم گروه مهندسی علم زیستی، دانشگاه تهران، تهران، ایران
amoabediny@ut.ac.ir

تاریخ دریافت: 1393/11/7
تاریخ پذیرش: 1394/6/8

Downloaded from jsu.ssu.ac.ir at 2:59 IRDT on Wednesday May 22nd 2019
مقدمه

صدحانه علم و فناوری اروپا در یک بررسی چهارم در سال (ESTO: European Science and Technology Observatory) درآمد درمان در مقیاس تانک فعال می‌باشد و ۲۴ تا ناپذیره چیت درمان استفاده می‌گردد. ۱، هدف از طراحی و توسعه چنین سیستم‌های داروسازی، رساند بر سیستم‌های میزان بارگیری مناسب در داروهای درمان به وسیله خاصات از مطلوب و مورد نظر رسانش هدف‌مند، پایداری دارو، نیمه عمر بالا و سمیت بایین می‌باشد. جانگی کارگیران نمونه‌برداری با عنوان حمایتی دارویی، ساخت جدیدی از رسانش دارو به سلول‌های سرطانی از طریق ورود به روزنه‌های مونتریک‌های توده سیستم‌های ارایا نماید. این امر سبب رسانش غلطه بالایی از دارو طور اختصاصی به سلول‌های سرطانی هدف شده و از تخت خامی بر روی افت‌هم سالم را کاهش می‌دهد. دوم گروه از نانوهای، لپزورومیا و اتصالات داروی پلیر پیش از ۴۰ درصد نانوهای در دسترس کاربردهای بالینی می‌باشد. لپزورومیا در تکنولوژی هستند که از او باس، دربی‌ها لیدی منشکل از مولکول‌های لیدی امپلیک شده و در نیروی پذیر از کریپت و تَرکیبی که در آن ساک از لپزورومیا به صورت آتی‌شری ترکیبی استفاده شد، اگر آنلاین لپزورومیا ناتسباش، بارگیری انسداد دارد خواهد کرد. سامانه‌های که جهت تخلخل داروی کاهش داده می‌باشد، افزایش کمتر از ۱۵۰ نانومتر درند، همچنین نانوهای نایاد بی‌گو گوکترن ۵ نانومتر باشند، زیرا توسط سیستم کلیه دفع می‌گردد. در پوشه توسط محققین مرکز پوشه‌های فناوری های تولید نمونه‌های سیستم (RES: Reticuloendothelial System) یک جدیدیت شده تا ۸۰۰ نانومتر با درون شدن با خشونت تولید نمود که کمتر از توسط بی‌سندی چیدمانی PEG پلیمری موثر در جلوگیری از فراوان جذب توسط PEG پروتئین‌ها می‌باشد. تأثیر نسبت تکمیل‌مولولی‌های سطح حمل کننده دارو در افزایش زمان گردن و افزایش دسترسی نانوهای لپزورومیا به خوبی شناسخت شده است(۳۲). از مزایای استفاده از نانوهای هدف‌مند به نمونه‌های سامانه‌های راهی داروی می‌پذیرد به دانشگاه داروسازی، کاهش مقدار فعال نیز به رای دستیابی به هدف، پذیرش بهتر عامل درمانی توسط بنیاد، توپاسی

دوره بیست و سوم، شماره سوم، خرداد ۱۳۹۲

مجله دانشگاه علوم پزشکی و خدمات بهداشتی - درمانی شهید صدوقی یزد
کردن آزادسازی: با کنترل ترکیب‌بندی که در ساخت غشا و لایه به کار می‌رود موانع خاصیت‌های نفوذپذیری مواد را غیر فعال می‌کند. ۳ - کنترل pH آزادسازی: با تغییر pH به فاصله‌ای طیب‌بینی به کمک دما یا می‌توان آزادسازی را با صورت کنترل شده در آورد. ۴ - درمان هدفمند: با طراحی آنداره بی‌دوره سطحی لیپوزوم برای درمان هدفمند غیرفعال و باکتری‌فیگر آنتی‌بادی با دیگر لیپائدنی برای درمان هدفمند می‌توان به کار می‌رود. ۵ - جنب سلول: مکانیسم غیر فعال لیپوزوم به توسط سلول به انودوسیز یا فوریت انجام می‌شود. این پدیده برای رساندن مواد زنگین به داخل سلول مناسب می‌باشد.

با توجه به ویژگی‌های سالانه‌های لیپوزوم در این طرح ترکیب فلورولوئیدی ضدسرطانی سیلیبین (Silibinin) با برهمکنش بیو‌پلیمری با رضایت سلول‌پیچیده‌ای انتخاب شده‌است (Silybin: Silibinin) با داشتن توانایی درمان سرطان کبد، سرطان کولون و ... موثر شاخه ویسته است.(14) ترکیب سیلیبین و گیاه خارمی دارای خاصیت ضدسرطانی و محافظتی توسط سلول‌های کبد، سرطان کولون و ... موثر شاخه ویسته است(15). ترکیب سیلیبین و گیاه خارمی دارای خاصیت ضدسرطانی و محافظتی توسط سلول‌های کبد، سرطان کولون و ... موثر شاخه ویسته است(14).

در این مقاله کالدی آسم می‌باشد:\nSilybin A, Silydianin, Silychristin, Silybin B, Isosilybin A, Isosilybin B, Darrow پاکتیکس (Taxol) داروی میکروکاولسیونی (Paclitaxel) که در سال ۲۰۱۱ میلادی در تحقیق‌های حاصله این پژوهش به‌روش موفق به منظور بهبود رساندان سیلیبین به شکلی که توسط کالدی آسم به‌روشی‌ای با حرکتی بین ۲۰ تا ۴۰ تا ۲۰ نانومتر دارای توانایی خوبی در بهبود عملکرد داروی سیلیبین‌بوده (19). در تحقیقی دیگری شامل‌های لیپوزوم‌سیلیبین با قطع مناسب ۷۰ نانومتر دارای عملکرد داروی بهتری در مقایسه با فرم بوده‌ای آزاد آن بوده (20) با توجه به آنکه پایداری ماده سیلیبین‌بین به طور آزاد در خون ۲۰۰۲ طراحي و ساخت نانو لیپوزوم آهسته رهش حاوی داروی ...
محمدخدا اوچی و همکاران

کم و جذب آن در بین بسیار بابین می‌باشد، هدف از این تحقیق کپسوله‌کردن سیلیپین‌های داخل نانوپیونو با ایجاد روند لیف‌پرو نانوپیونو و رایدیل بارگذاری مناسب درمان با محتیکه راهیش آمیزه دارو می‌باشد که به منظور افزایش نانوپیونو و تجمع
آن صورت می‌گردد و می‌تواند در مردان سلوئی هارسنتی
کم کاربرد یابد.

روش بررسی

مواد مورد استفاده شامل: ذی‌پالمنتویت افسن‌دیل کولین (Cholesterol), کلسترول (Lipoid GmbH- Germany), پلی اتیلن گلیکول (Sigma-Aldrich Co- USA) متعلق به سفارش‌خور (DSPE-mPEG2000), گرگ فلورستن (DIL: Dioctadecyl (Germany Sigma)-) (tetramethylindocarbocyanine perchlorate), سیلیپین‌های (Maltose), (Aldrich Co- USA), (HEPES buffer), بوفر هیر (Sigma-Aldrich Co- USA) ملی‌مولار (5/5), کیسه‌ی (Spectra/Pore®Dialysis membrane) (جداسازی وزن مولکولی 14-12,000-14,000 molecular), (Spectrum Laboratories Inc- USA), (weight cut off فیلتر 1/20, 0/25) میکرو‌مولار اتانول مطلق و آب دیوئزیشه بوده است.

جثته نانوپیونو حاوی سیلیپین‌های به روش ایده، فیلم نازک لیپیدی که روشنی کلاسیک در تهیه زایک‌های Archakov است، طبق رویش و همکاران و رویش El-Samaligy با تغییر و اصلاح انجام گردید(2021). یک دیگر نانوپیون F, لایه N...
پیانسیل زناناولیپوژوم‌های حامل دارو با استفاده از دستگاه‌زیتا Brookhaven Instruments Corp (USA) سایز شرکت دس‌ای ساخت ۲۰۰۴ طزاحی ٍ ساخت ًاًَ ليپَسٍم آّستِ رّص حاٍی دارٍی
دمای ۲۵ درجه سانتی‌گراد اندوه‌گری گردید. برای تعیین بار
سطحی از ۱۵۰۰ میکرون‌تیم نمونه با غلظت ۱/۰ mg/ml
استفاده گردید.

از نانولیپوژوم‌ها با استفاده از میکروسکوپ الکترونیکی
(KYKY-EM3200-30KV- China) (SEM) شکل و ساختار نانولیپوژوم‌های تولیدی حامل دارو تشیع
گرفته شد. همچنین جهت بررسی چندشاخی بودن و ساختار
غشاء نانولیپوژوم، تصاویر با استفاده از میکروسکوپ الکترونیکی انتقلی (K) با توان ۱۵۰ کیلو ولت
تهیه گردید.

گره‌ها عاملی سطح نانولیپوژوم تولید شده توسط آنالیز
طبیع سنجی مادون قرمز (IR) (بررسی گردید. در طی مادون
قرمز عمداً دو ناحیه مورب توجه است. ناحیه گره‌عامی از
۱۵۵۰-۱۵۰۰ تا ۱۴۰۰ نمایهای است که بیشتر کشش‌های
پودی اتفاق می‌افتد. این ناحیه معمولاً تعداد نسبتاً کمی
پیک دارد اما بسیاری از پیک‌های آن منشأ کننده گره‌های
عامی هستند. برای اطمینان از نبود داروی آزاد و مواد اضافی
در نانولیپوژوم از نمونه دیالیز شده نانولیپوژوم استفاده
گردید و با نماینده کاهش رطوبت، نغیمگی تعداد نمونه در
آن برای دمات تقیبی ۶۰ درجه سانتی‌گراد قرار داده شد.

برای اندازه‌گیری طول موج مناسب در آنتی‌بیوتیک غلظت
ترکیب داروی با روش HPLC ابتدا طول موجی که
دارای جدایی کانترای از جنس و سیلیسین در حل
با مناتون به نسبت ۲/۱ (می‌باشد,
توسط دستگاه اسیتروفوتامتر UV-VIS استفاده
گردید.

HPLC

برای تعیین میزان داروی پروگیرالیس نشته به روش
HPLC ابتدا با فرابین دیالیز، داروهای آزاد از نانولیپوژوم‌ها جداسازی
شدند. برای معنی‌داری دادن کیسه دیالیز این داده (جداسازی
وزن مولکولی با ۱۲-۱۴ کیلو دالتون) حدود ۲ میلی‌لیتر از
محلول نانولیپوژوم ریخته شد و دو سر کیسه محکم بسته

فسفولیپوزوم‌ها در محیط سوسپنسرن به طور هم‌زمان مخلوط و
با اندازه‌بندی کافی و در یک ریزی فاز اضافی در نانولیپوژوم‌ها
تشکیل گردیده‌اند. هم‌زمان با اندازه‌بندی حجم زیادی از باین آبی
به لیپوژوم‌های خشک درون بیان، سوسپنسرن حاوی
لیپوژوم‌های جداسازی به ابعاد مختلف از دما میکروگری چند
ده میکرون تکنوری شکل‌داد.

- ۱- برای کاهش اندوه‌گری لیپوژوم‌های برگ چندی‌بندی و شکل
لیپوژوم‌های نک (لایو کوچک از روش سونیکس که استفاده
گردید. برای کاهش سایر لیپوژوم‌های برگ چندی‌بندی، پرور
دستگاه سونیکس کندن در داخل محلول کلوئیدی لیپوژوم‌ها
داخل طرفخ بودن، قرار داده شد و سپس فرآیند سونیکس
که جهت تولید لیپوژوم‌های کن جدایی مطلوب شیار زیر
انجام گردید. شرایط سونیکس کن، توان: ۶۰/۰%.

به مدت ۱ دقیقه ۱۰ ثانیه روشن و ۱۵ ثانیه خاموش یو.
- ۲- پس از فرآیند نمایش و مواد اضافی نمونه‌ها
(همچون تیتانیوم حامل از سیلوسیاون) با استفاده از
سانتریفیژ با دور ۵۰۰۰ دور به مدت ۵ دقیقه از محلول
لیپوژوم‌های جداسازی شدند. سپس به نماینده جداسازی ذرات با
اندازه برگ‌های ذرات گردی‌گری و همگین شدن
محول به دست آمد به مرحله پیش فیلتر‌کردن از فیلتر
۴/۰ میکرون استفاده گردید و در آخر جهت استریل
کردن، محلول از فیلتر با قطر حفرات ۲/۰ میکرون عبر
داده شد.

DLS: Dynamic

مجیده توزیع اندازه ذرات با استفاده
تعیین می‌شود که بین نمایر Brookhaven Instruments Corp (USA) نانو سایز (۲۵nm)
گردید. اندازه‌گیری نانولیپوزوم‌ها در بک زاویه ۹۰ درجه و
تا نیز لارز طول موج ۶۵ درجه
سانتی‌گراد صورت گرفت. همچنین اندازه‌گیری نمونه‌ها در
۵ مرن و در موه ماهه ۳۰ ثانیه نایا انجام گردید. جهت
۱۰ تا ۶۰۰ میکرون‌تیم نمونه با غلظت ۱/۰ mg/ml
تیم نمونه استفاده گردید.

جهت تعیین پتانسیل زنا نانولیپوزوم‌ها، میزان با سطحی و

درجه بیست و سوم، شماره سوم، خرداد ۱۳۹۴

مجله دانشگاه علوم پزشکی و خدمات بهداشتی - دانشگاه شهید صدوقی یزد
محمدهدی اوجی و همکاران

جردی و سپس کسی دیالیز داخل 200 میلیلیتر باقی می‌ماند. مولکول قرار داده شده و در همان مرحله با HEPES تعویض بافر و هم‌مانگنز مغناطیسی دیالیز گردید که مدت زمان مرحله اول: 2 ساعت، مرحله دوم: 2 ساعت، مرحله سوم: 12 ساعت و مرحله چهارم: 2 ساعت بوده است و در مرحله چهارم جهت تعویض بافر به آن قند مانیوت نیز اضافه گردید. بعد از فرارید دیالیز 100 میکرویتر از محلول تانولیپوزم دیالیز شده فاقد داروی آزاد در 200 میکرویتر متانول محلول شد و جدید 5 دقیقه ورشک و سپس حمام آب و بیرون از تانولیپوزم انجام گرفت. سپس از نمونه حاصل مستقیماً جهت تعیین داروی پارگانداری شده سیلیپینین، آنالیز HPLC انجام گرفت.

شایع HPLC جهت تعیین غلظت داروی سیلیپینین در HEPES و همکاران و روش Park تا مثابره اصلاح شده تا غلظت داروی (18.21±0.80) درصد و شدت 1 میلیلیتر بر دقیقه و طول موج چیزی 340 ناتومتر و استفاده گردید. سپس اب اساس 80% به غلظت اولیه و شدت انی، درصد برگزی و تکی داروی محاسبه گردید.

درصد راندمان پارگانداری داروی تکی دیالیز 100 ناتومتر

| تکی دیالیز | غلظت درصد | میلیلیتر | 12/40
|---|---|---|
| تکی دیالیز | محاسبه گردید | HEPES | HEPES

جهت تعیین میزان رعارض تکی داروی سیلیپینین 1 تکی درصد تانولیپوزم‌های تولیدی با غلظت اولیه که با توجه به روش بازگزاری حاوی 67/2 میلیلیتر مولکولی با 12-4 کیلو دالتن (با عرض 2/5 سانتی‌متر) بوده است. رنگ شد و به 25 میلیلیتر باقی میلیلیتر HEPES در بشر 100 میلیلیتر قرار گرفت و سپس با دور 100 rpm یا میکنگ (و با منگنیت) در دمای 27 درجه سانتی‌گراد (شایع دمای بدن) هم زده شد و بعد از مدت زمان 1-3-6-9-12-18-21-24 ساعت، به میزان 392 میکرویتر.
دو لایه بودن غشاء و ساخت کروی نانولیپوزوم‌های حامل دارو در تصاویر گرفته شده با میکروسکوب الکترونیکی انتقالی (TEM) مشاهده گردید.

در تصاویر (TEM)، اندازه نانولیپوزوم‌های حامل دارو عموماً بین ۳۰ تا ۶۰ نانومتر مشاهده گردید که با نتایج تعبیه‌ای اندام‌ها با روش SEM و تصاویر DLS مطابقت نمود (شکل ۴).

جدول ۲: پیانویل زا نانولیپوزوم‌های حاوی ترکیب دارویی

<table>
<thead>
<tr>
<th>بار سطحی</th>
<th>اندام‌ها بالا</th>
<th>سونیکه کرون با توان %</th>
<th>(پتانسیل زنا)</th>
<th>حجم (نانومتر)</th>
<th>نانولیپوزوم حامل دارو</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵/۲۵</td>
<td>۶۰</td>
<td>۴/۲/۲</td>
<td>۳/۴/۳</td>
<td>۳/۳/۳</td>
<td></td>
</tr>
</tbody>
</table>

دراورد تصویر گرفته شده با میکروسکوب الکترونیکی (با توان ۲۵ کیلو ولت) نانولیپوزوم‌های تولیدی حامل دارو در ایشک‌گیر کروی و ساختاری یکپارچه بودند. در تصویر گرفته شده با میکروسکوب SEM اندازه بیانگی مقدار SEP نانولیپوزوم در حدود ۴۵ نانومتر تعیین گردید (شکل ۳) که با نتایج حاصل از روش DLS مطابقت داشت.

شکل ۳: تصویر SEM نانولیپوزوم حاوی ترکیب دارویی

این الگویی که دارای حداکثر جذب به وسیله ترکیب سیلیسیون‌های حاوی HEPES سیلیسیون‌های در حال (با فرا با مانوی پیوند ۲:۱) مطابقت داشته است.
درصد بارگذاری ترکیب داروی سیلیبینین در نانولیپوسوم تولیدی به میزان ۲۴/۷٪ محاسبه گردیده است.

<table>
<thead>
<tr>
<th>جذب طول موج (نانومتر)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۳/۲۵</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۰۵</td>
</tr>
<tr>
<td>۳</td>
<td>۴۴/۴۷</td>
</tr>
</tbody>
</table>

غلظت اولیه ترکیب داروی مورد استفاده در تهیه نانولیپوسوم برای گردیده با:

غلظت داروی بارگذاری شده = ۳ × ۲۰۰۸/۰۲ = ۶۰۳/۸ (mg/ml)

درصد بارگذاری سیلیبینین = ۱۰۰ × ۶۰۳/۸ / ۲۴/۷٪

شکل ۵ نمودار تعیین طول موج چاکت جذب توسط سیلیبینین

شکل ۶ مانندی تعیین میزان سیلیبینین بارگذاری شده (با یک سوم غلظت) در نمونه نانولیپوسوم تولیدی حامل دارو با روش HPLC.

شکل ۷ محاسبه باریک سیلیبینین با روش HPLC.

سیلیبینین به صورت آهسته رهش می‌یابد (شکل ۸). در این بررسی نمونه نانولیپوسوم فاقد ترکیب داروی ب رو، گروه کنترل تعیین گردید که با گذشته زمان فاقد رهایش دارو با

می‌باشد، توسط دستگاه اسکریپتومتر UV-VIS اندازه‌گیری و تعیین گردید. در جدول ۲ نشان داده شده است که سیلیبینین در طول موج ۲۴۰ نانومتر چاکت جذب را در خلاء (متوسط به نسبت ۲۰/۱) دارد که به عنوان طول موج دارای چاکت جذب در این ترکیب انتخاب گردیده (شکل ۶ و جدول ۳).

میزان میانگین رهایش ترکیب داروی با روش HPLC در سطح ۱/۰۵ اندک‌تر گردیده است. منحنی رهایش به دست آمده برای نمونه نانولیپوسوم تولیدی حامل ترکیب با روش HPLC با دقت مانندی تعیین میزان سیلیبینین بارگذاری شده (با یک سوم غلظت) در نمونه نانولیپوسوم تولیدی حامل دارو با روش HPLC.

مجله دانشگاه علوم پزشکی و خدمات بهداشتی - درمانی شهید صدوقی برد

دوته بست و سوم، شماره سوم، خرداد ۱۳۹۴

محمدمهدی اوجی و همکاران
انجام گرفته‌ی مقدار میانگین تیمارها که در جدول ۴ با حروف جیر دانشکن نشان داده شده‌اند. بر اساس آزمون دانک در سطح ۱۰۰۰ در ۵ دارای اختلاف معنی‌دار می‌باشد.

![گراف سیلبینین](canvas.png)

شکل ۸ منحنی راهیش داروی گیاهی سیلبینین از نانوپوزوم

جدول ۴ درصد راهیش داروی گیاهی سیلبینین برگزاری شده‌ی دانکری نانوپوزوم با کشش زمان

| میانگین درصد راهیش ترکیب سیلبینین (5% زمان (ساعت)|
|---|---|
| کنترل | D |
| ۱ | ۸/۲۹ C |
| ۲ | ۸/۲۹ C |
| ۴ | ۸/۲۹ C |
| ۶ | ۱۱/۰۵ C |
| ۱۵ | ۱۱/۰۵ C |
| ۱۸ | ۱۳/۸۱ C |
| ۲۱ | ۱۴/۴۱ BC |
| ۲۴ | ۲۲/۱۰ BA |
| ۴۸ | ۲۴/۸۷ A |
| ۶۶ | ۲۴/۸۷ A |
| ۶۹ | ۲۴/۸۷ A |
| ۷۱ | ۲۴/۸۷ A |
| ۷۵ | ۲۴/۸۷ A |

5 اعداد سنون که با حروف یکسان نشان داده شده‌اند بر اساس آزمون دانک در سطح ۰/۵ فاقد اختلاف معنی‌دار هستند (هر عدد میانگین سه تکرار است).

مجله دانشگاه علوم پزشکی و خدمات بهداشتی- درمانی شهید صدوقی یزد
دوره بیست و سوم، شماره سوم، خرداد ۱۳۹۲

۲۰۰۸ طراحی و ساخت نانوپوزوم آماده رهش حاوی داروی...
نتیجه‌گیری

امروزه نانوپویزها با داشتن ناسیبی بهداشتی اداره دارو و عداو در آمریکا (FDA) به‌طور بیشترین نانو حامل‌های مورد استفاده در کاربردهای بالینی برای انتقال داروها در بدن میشود (۱۲). با توجه به آنکه سرطان کبد از جزء سه‌سرطان معمول متوجه به مرگ در جهان می‌باشد (۴۳)، یافتن راهکار درمانی مناسب برای رایگیرین شکل سرطان کبد کارسینوم‌های‌نیولاز یا هیپاتوم به‌دستی می‌باشد. داروی اهمیت بزرگی است. بر اساس تحقیقات مختلف انجام شده، ترکیب سیلیپستین‌ها مدعی تأیید که گیاه داروی خلخالی است. گیاه داروی خلخالی، با دقت‌بندی غیرمزیمی می‌باشد که در تمایل غشاء‌های زیستی موجودات زندگی اغلب وجود دارد. همچنین پلیمر PEG مورد استفاده شده در سطح این حامل، پلیمری زیست‌سازگار است که در شرایط‌های دارویی (از افراد قاچاقی در پلاسماغیره‌ای انتخاب شده و در شرایط‌های دارویی زیست‌سازگار شده در این شرایط‌های دارویی زیست‌سازگار با بدن اندازه مناسب‌ترین ۵۰/۸ نانو‌تر و شرایط مناسب‌ترین رهش دارو، این سامانه می‌تواند راهکاری مؤثر در انتقال‌های پاپادی و داروی سرطان کبد در آینده‌ای نزدیک باشد.

سیاستگرایی

پنجم تشکیل و سیاست از خلاصه متعال به جهت انجام این طرح از حسایم مرکز پژوهش‌های فناوری‌های نوین در مهندسی علوم زیستی دانشگاه تهران و همکاران محققین این مرکز در این طرح، قدردانی نموده و توقف رو Shard زو از مدل مورد مطالعه می‌گردد.
References:

7- Gholamaalian Dehaghani M, Amoabediny Gh, Ochi-Ardebili MM. Investigation of the phospholipid/cholesterol ratio parameters on the size of nanoliposomal anti-cancer drug (Doxorubicin as a model). 5th International Congress of Biochemistry and Molecular Biology (ISI); Shahid Sadoughi University of Medical Sciences; Yazd, Iran; 2013.

11- Ochi-Ardebili M M, Ahmadzadeh M, Sharifi-Tehrani A. Modern process of increase rosmarinic acid active substance of Rosemary medicinal plant by fluorescent pseudomonads probiotic bacteria. 5th International Congress of Biochemistry and Molecular Biology (ISI); Shahid Sadoughi University of Medical Sciences; Yazd, Iran; 2013.

16- Alamgir M, Uddin J. Recent advances on the ethnomedicinal plants as immunomodulatory agents. Ethnomedicine 2010: 227-44.

Design and Preparation of Encapsulated Nano-Liposome Controlled Release including Silibinin Anti-Cancer Herbal Drug (Nano Phytosome)

Ochi Ardebili MM(PhD student)1, Amoabediny Gh(PhD)2, Rezayat SM(PhD)3, Akbarzadeh A(PhD)4, Ebrahimi B(PhD)5

1 Department of Nano Biotechnology, Research center for new technologies in life science engineering, University of Tehran, Tehran, Iran
2 Department of Biotechnology and Pharmaceutical Engineering, Research center for new technologies in life science engineering, University of Tehran, Tehran, Iran
3 Department of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Nanobiotechnology, Pasteur Institute of Iran (IPI), Tehran, Iran
5 Department of life Science Engineering, University of Tehran, Tehran, Iran

Received: 10 Nov 2014 Accepted: 26 Feb 2015

Abstract

Introduction: Nano-liposomes are Nano particulate vesicles with lipid membrane which are under extensive investigation as drug carriers for improving the delivery of therapeutic agents. This study intended to enhance efficacy of Silibinin herbal drug in Nano liposome system (Nano phytosome) via encapsulation for delivery to liver cancer cells. Silibinin is one of the anti-cancer drugs, which its antitumor efficacy is primarily attributed to decreasing N-nitrosodiethylamine in hepatocit carcinoma cells. Nano Liposome encapsulation of Silibinin can dramatically improve its biological activity and increase stability of Silibinin in blood.

Methods: Small uni-lamellar (SUV) vesicles entrapping Silibinin were prepared using DiPalmityl PhosphatidylCholine (DPPC), cholesterol: DSPE-MPEG2000 at 7:4:0.36 molar ratio , the fluorescent label (DIL) incorporated in the lipid bilayer at 0.09 mol % as lipophilic phase and buffer of HEPES as hydrophilic phase. Moreover, Nano Liposome size, Zeta-potential, encapsulation efficiency and release of drug were determined after Nano Liposome production.

Results: The study results demonstrated that mean nano-liposome diameter was 46.3 nm. The size and structure of Nano-liposomes were analyzed by SEM and TEM images. The zeta potential of the encapsulated Nano-liposomes was shown -23.25. The encapsulation efficiency for Silibinin was about 24.37%.

Conclusion: In this study, silibinin drug encapsulated nano-liposome controlled release system to improve the solubility and bioavailability of silibinin for delivery to liver cancer cells.

Keywords: Encapsulation; Liver cancer; Nano liposome; Silibinin

This paper should be cited as:

*Corresponding author: Tel: +98 2166408808, Email: amoabediny@ ut.ac.ir