بررسی آثار کامپوزیت زلاتین-کیتوسان بر کشت سلول‌های استروماپی مغز استخوان موش صحرایی

اسفند کرم جویباری، مهدی صابری، گلامرضا کاکا، سیدهمايون صدراکی، مهوش جعفری، فاطمه سالم، عسگر امامقلی

چکیده:

مقیده: زلاتین-کیتوسان به عنوان بیولیمپهای زیست سازگار و زیست تخم‌یزدیک شناخته شده‌اند. هدف از مطالعه حاضر بررسی اثرات غشاء زلاتین-کیتوسان بر روی زندگی مانند، تکثیر، مرگ و تمایز سلول‌های استروماپی مغز استخوان موش صحرایی می‌باشد.

روش بررسی: در این مطالعه ابتدا فیلم کامپوزیتی زلاتین-کیتوسان به وسیله قابل‌گیری مخلوط این دو پلیمر در اسیدستیک گلیسال به مرحله پاساژ بیماری BMSC تهیه شد. پس از اینکه سلول‌های BMSC به فاقد غشاء (شاده) لیپید محيط کشت حاوی سلول و غشاء زلاتین، لیپید محيط کشت حاوی سلول و غشاء کیتوسان و لیپید محيط کشت حاوی سلول و غشاء زلاتین-کیتوسان کشت داده شدند. زندگی دهدن سلول‌ها در روزهای دوم، چهارم و ششم توسط رنگ ترپینان لو تکثیر سلولی از طریق شمارش سلول‌ها و مرگ سلولی توسط رنگ آلبرین آوریج مورد بررسی قرار گرفت. همچنین با بررسی بین پروتئین CD44 و Fibronectin به روش ایمونوسایتواسیمیا تمایز سلولی در روزهای دوم، چهارم و ششم در گروه‌های مختلف بررسی شد.

نتایج: میزان تکثیر سلول‌ها در گروه کیتوسان در مقایسه با گروه فیبرنیک کاهش می‌یافت. میزان داشته شده (2/03/7). اما گروه‌های زلاتین و زلاتین-کیتوسان مشابه گروه فیبرنیک بوده و سلول‌ها تقریباً به اندازه ایزوفیک یافت بوده همچنین عدم تمایز سلولی در تمام گروه‌های مشاهده شد.

نتیجه‌گیری: نتیجه‌گیری نشان داد غشاء زلاتین-کیتوسون می‌تواند به عنوان مدلی مناسب از یک داربست زیست تخم‌یزدیک در مهندسی بافت و سلول درمانی مورد استفاده قرار گیرد.

واژه‌کلیدی: سلول‌های استروماپی مغز استخوان، غشاء زلاتین-کیتوسون، تکثیر و تمایز سلولی

1. کارشناسی ارشد سمن، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ارشد، تهران، ایران
2. استاد غده فیزیولوژی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، تهران، ایران
3. استاد غده فیزیولوژی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، تهران، ایران
4. استاد غده فیزیولوژی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، تهران، ایران
5. استاد غده فیزیولوژی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، تهران، ایران
6. کارشناسی ارشد پاتولوژی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، تهران، ایران
7. کارشناسی ارشد طب نانوتکنولوژی، مرکز تحقیقات علوم اسلامی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، تهران، ایران
m_s_saber@yahoo.com
* نویسنده مسئول: تلفن: 9113987336 پست الکترونیکی: m_s_saber@yahoo.com
تاریخ دریافت: 1397/2/2 تاریخ پذیرش: 1397/2/4

سپاه‌ها و بندی‌ها، به دلیل تولید انواع سول‌های جدید و پیشرفت‌های در زمینه مهندسی بافت‌های مربوطه قرار گرفته است. در این مطالعه، مزایای وسایل کیفی‌سازی بافت‌های زلاتین-کیتیسون و کینوسان بر کشت سل‌های استروژن مورد بررسی قرار گرفتند.

مقدمه

در این مطالعه از مراحل کیفی‌سازی بافت‌های مربوط به سول‌های استروژن استفاده شده است. بیش از ۱۶۷۴ مورد از آزمایشات حیوانی بر کشت سل‌های استروژن در حال بررسی است. این مطالعه به دلیل تولید انواع سول‌های جدید و پیشرفت‌های در زمینه مهندسی بافت‌های مربوطه قرار گرفته است. در این مطالعه، مزایای وسایل کیفی‌سازی بافت‌های زلاتین-کیتیسون و کینوسان بر کشت سل‌های استروژن مورد بررسی قرار گرفتند.
بپی‌گرو اول نیاز به ضرورت حضور غیاب، گروه دوم غیاب زلانی، گروه سوم غیاب کنتونس و گروه چهارم غیاب زلانی-کنتونس. البته جهت بررسی خلقت سلول‌های استروماتیا مغز استخوان، رنگ‌آمیزی ایمپوپتاسیمی انجام شد و برای این منظور از آنتی‌باده‌ای فیبرکوئین و CD44 استفاده گردید. ابتدا پیل‌های مورد نظر با PBS به مدت 5 دقیقه شستشو داده شد. سپس سلول‌ها با محلول 4% پارافومندین به مدت نیم ساعت تابت شده و پس از شستشو بیشتر PBS و آزادساز محلول تابش‌آمیزی تهیه شده از PBS و سپس به مدت 10 دقیقه در اتانول ۹۶% قرار گرفت. در پایان غشاء تشبت نشده با آب دوبار تقطیر شستشو و در دمای اتاق خشک شد.

سلول‌های از استخوان‌های خانه و درشت نی منوی محرک ماشین به‌اکنون دو و نیابت استخوان‌های بین‌درتکمی یک پس از بیهوشی کردن تایوان با متاتور ۵۰ mg/kg گزینه (۱/۳ ادام خلبانی و پشت تایوان توسط محلول بنادین و و کل مول ۲۰ درصد ضدغیره گردید. سپس استخوان از وسط دو تیم شد که به استفاده از یک سرگن ۵ ml مول یک میلی‌لیتر Alpha Minimal Essential Medium (α-MEM) محتوی کشفی است از داخل کانال استخوان آسیبوی شد. محتوی داخل سرگن در زیر هود در فلز مخاط خشک سلولی حاوی ۲ مول ۰۰ مول هویت کنتونس و (FBS: Fetal Bovine Serum) مول ۱۰/۵ مولی آدنیکسن و (Bovine MM) CO2 ۱۰/۵ و سپس در اکچونا C02 گرفت. از گسترش ۳۰ ساعت محتوی کنتونس سلول‌های از گسترش استریل بی‌فیتوفری: PBS: Phosphate Buffered Saline (PBS) حاوی ۲ مول ۱۰۰ مولی کنتونس و \\textit{CO2} و ۴ مولی ۲۰ EDTA و ۴۰ مولی Trypsin. این عمل تا دو نیابت ادامه داشت از دری شیفت سلول‌ها.

برای بررسی میزان پررنگ و تکثیر سلول‌های زندگی برای استخوان‌های مغز استخوان، هر کدام از خانه‌ها در زمان دوم، ششم و ششمی مولوکوس اینورت مشاهده و توسط دو تن در دمای دیجی‌تل متناسب با بی‌پژواک‌ها خشک گرفته شد. جهت شمارش سلول‌ها، ۵ میکروگرام‌پیک میلی‌متر یک صفحه بر صورت میکروسکوپی انتخاب و تعداد سلول‌ها در هر میکروگرام‌پیک شمارش داده و میزان آن محاسبه شد.

برای بررسی میزان سلول‌های زندگی در پایان روز ششم، به هر کدام از پیل‌ها ۲۰ میکروگرام از تریکلایل‌های اضافه شده و در زمان شستشو، ۱۰۰ میکروگرام با سلول‌های مرده و زندگی در روزهای مورد نظر مشخص شد. در این روش، زنجیره داخل سلول‌های مفرد تهیه می‌گردد و به زنجیره آبی در میان این سلول‌های زنجیره معرف سلول‌های زندگی هستند که با شمارش کل سلول‌ها و سلول‌های رنگ‌شده درصد.
سولِهای زنده به دست آمده با استفاده از روش آماری آنالیز واریانس یک طرفه (ANOVA) و آزمون Tukey تجزیه و تحلیل و سطح معناداری کمتر از 0/05 در نظر گرفته شد.

نتایج
تکثیر سولِهای BR بر روی غشاء کیتُوسان در تمام روزهای کشت سلَل ّای و کیتُوسان در گروه‌های زلاتین و زلاتین-کیتُوسان در تمام روزهای مشابه گروه کنترل بود و اختلاف معناداری نداشت (نمودار 1).

نمودار 1: تکثیر سولِهای BR در روزهای دوم، چهارم و ششم در گروه‌های مورد مطالعه BMSC

براساس نشان دهنده وجود اختلاف معنی دار با تناسب گروهها

گروه کیتُوسان، در بقیه گروه‌ها بیش از 90/9% سولَهای زنده بودند.

درصد سولِهای زنده در گروه کیتُوسان نسبت به سه گروه دیگر کاهش معناداری داشت (جدول 1).

جدول 1: درصد سولِهای زنده در روزهای دوم، چهارم و ششم (پس از سه بهتر تکرر).

<table>
<thead>
<tr>
<th>گروه ها</th>
<th>درصد سولِهای زنده در روز ششم (میانگین ± انحراف استاندارد)</th>
<th>درصد سولِهای زنده در روز چهارم (میانگین ± انحراف استاندارد)</th>
<th>درصد سولِهای زنده در روز دوم (میانگین ± انحراف استاندارد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>96±0/14</td>
<td>92±0/18</td>
<td>91±0/17</td>
</tr>
<tr>
<td>زلاتین</td>
<td>93±0/14</td>
<td>92±0/19</td>
<td>90±0/19</td>
</tr>
<tr>
<td>کیتُوسان</td>
<td>91±0/14</td>
<td>92±0/18</td>
<td>90±0/19</td>
</tr>
<tr>
<td>زلاتین-کیتُوسان</td>
<td>92±0/14</td>
<td>93±0/19</td>
<td>90±0/18</td>
</tr>
</tbody>
</table>

نشان دهنده وجود اختلاف معنی دار با تناسب گروهها

دهره بیست و دوم، شهره ششم، بهمن و اسفند 1393
نتایج مربوط به رنگ‌آمیزی با آکریدین اورینج نشان داد که سلول‌های با هسته و سیتوپلاسم قرمز تا نارنجی، سلول‌های در حال مرگ و سلول‌های با هسته و سیتوپلاسم سبز، سلول‌های زنده می‌باشد. همانطور که در شکل ۱ نشان داده شده است اکتین سلول‌ها در گروه‌های کنترل، ژلتین و ژلتین-کنتوسان پس از شش روز زندگی بودن و میزان بسیار کمی از سلول‌ها دچار مرگ سلولی شده‌اند در حالی که مقدار مرگ سلولی در گروه کنتوسان نسبت به گروه کنترل اختلاف معنی‌داری داشت.

شکل ۱: تصاویر رنگ آمیزی آکریدین اورینج از سلول‌های BMSC در روز ششم پس از پاساژ دوم (A) گروه کنترل، (B) گروه زلتین، (C) گروه ژلتین-کنتوسان و (D) گروه ژلتین-کنتوسان می‌باشد. نوبت پیکان یک سلول در حال مرگ را نشان می‌دهد.

برای اثبات استرومای بودن و خلاص بودن به ترتیب BMSC به ترتیب از آنتی‌بادی‌های فیبرونکتین و CD44 استفاده گردید. شکل ۲ از آنتی‌بادی‌های فیبرونکتین و CD44 و آنتی‌بادی‌های CD44 و ژلتین در سلول‌های BMSC از پایان روز ششم در گروه کنترل متفاوت

شکل ۲: رنگ آمیزی ایمونوسیستمی توسط آنتی‌بادی اولیه آنتی-Fibronectin و آنتی‌بادی اولیه CD44 از سلول‌های BMSC در روز ششم پس از پاساژ دوم گروه‌های مختلف avidin-biotin-peroxidase و DAB رنگ و انتی‌بادی‌های توسط گروه‌های Fibronectin و CD44 توسط رنگ‌گذاری با رنگ قهوه‌ای دیده می‌شد.
بحث و نتیجه‌گیری

بررسی کشت سلول‌های استروموگی مغز استخوان نشان داد که غشاء کیتوبس نامی‌ها در میزان رشد و تکثیر در مقایسه با سایر گروه‌های دارد. در حالي که این اختلاف برای زلانین و زلانین-کیتوبس در مقایسه با گروه کنترل معنی‌دار نبود و این نشان داده‌ها تأثیر مثبت غشاء زلانین و زلانین-کیتوبس در رشد و تکثیر سلول‌ها بود. از طرف دیگر میانگین مرمی سلول‌های گروه زلانین-کیتوسن و همچنین گروه زلانین در پانه روز مشابه بوده در مقایسه با روز دوم و هچرام این میزان افزایش باقی است در حالی که میانگین مرمی سلول‌های گروه کیتوسن در زمان‌های مربوطه نسبت به گروه کنترل کاهش معنی‌داری داشته است. نتایج بیشتر نشان می‌دهد رشد و تکثیر سلول‌های BMSCs در غشاء زلانین بهبود و مشابه گروه کنترل بوده است. ضمن این که سلول‌های BMSCs زلانین-کیتوسن از چسبندگی خوبی برخوردار بودند، درصد مرمی سلول‌ها به پس شروع بیش از انتهای بهبود بوده است. این احتمال وجود دارد که غشاء زلانین به دلیل ذخیره انس با دموهای مانون آزمون، گلوبین و آسوار و چسبندگی این سلول‌ها و آفتاب‌زدهی آلفا سلول‌ها در محیط کشت و در نتیجه امکان رشد و تکثیر سلول‌را در راه کرده است. با افروش زلانین به کیتوسن، میزان چسبندگی سلول‌ها به میزان گرفته زلانین-کیتوبس افزایش یافته و به دنبال این میزان رشد و تکثیر سلول‌ها نیز بالا رفته. این احتمال وجود دارد که موقعیت غشاء زلانین در سطح تمام با سلول‌ها قادر بر رشد و کیتوسن را به‌طور درجه‌بندی به سلول‌ها روی غشاء افزایش می‌دهد. تکثیر و سلول‌های BMSCs روی غشاء ZBMSC و همچنین غشاء ZBMSC در کشت ZBMSC و ZBMSC چسبنده‌تر بودند. در نتیجه تحقیق حاضر بسیار شبیه تحقیق کار ایشان است(14).
ارزیابی کردن(19).
با بررسی تکیه سلول‌های BMSC، پایین بودن میزان مرگ سلولی و عدم تمزیق سلول‌های بر روی غشاء زلانی-کیتوس و غشاء زلانین، این غشانه می‌تواند در مهندسی بافت بعثون مدلی کاربردی مورد استفاده قرار گیرد(20). از طرف دیگر با توجه به اینکه غشاء زلانین در محیط بدن به تنهاپایابادی لازم را ندارد و به سرعت دچار تخریب می‌گردد، باپارای غشاء زلانین-کیتوس جهت استفاده در مهندسی بافت بهترین کاندید می‌باشد.

References:

Investigating Effects of Gelatin-Chitosan Film on Culture of Bone Marrow Stromal Cells in Rat

Karami Joyani A(MSc)¹, Saberi M(PhD)², Kaka Gh(PhD)³, Sadrai SH(PhD)⁴, Jafari M(PhD)⁵, Salem F(MSc)⁶, Emamgholi A(MSc)⁷

¹Department of Pharmacology, Aja University of Medical Sciences, Tehran, Iran
²Department of Pharmacology, Baqiyatallah University of Medical Sciences, Tehran, Iran
³Department of Anatomy, Baqiyatallah University of Medical Sciences, Tehran, Iran
⁴Department of Anatomy, Baqiyatallah University of Medical Sciences, Tehran, Iran
⁵,6 Department of Biochemistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
⁷Department of Nanotechnology, Neuro Science Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Received: 18 May 2014 Accepted: 16 Oct 2014

Abstract

Introduction: Gelatin and Chitosan are known as biodegradable and biocompatible biopolymers. These biopolymers have recently received increasingly more attention for tissue engineering. The aim of this study was to survey of effects of Gelatin-Chitosan film in viability, proliferation, apoptosis and differentiation on bone marrow stromal cell (BMSCs) culture in rat.

Methods: Fist, gelatin-chitosan composites film were prepared by solution mixing, of both biopolymer in 75% acetic acid. After two passage of BMSCs culture, cells in the four groups including control, gelatin, chitosan and chitosan-gelatin were grown. The cells viability during the second, fourth and sixth days by tripanblue, proliferation by cell account and cell apoptosis by Acridin Orange were examined. Also cell differentiation during the second, fourth and sixth day were evaluated by immunocytochemistry.

Results: The results showed significant reduction in cell proliferation in chitosan alone group (P<0.05). But the gelatin and chitosan-gelatin groups were similar to the control group as the cell proliferation was increased. Also all groups had no cell differentiation.

Conclusion: Results of proliferation, differentiation and apoptosis cultured BMSCs on a gelatin-chitosan film showed that gelatin-chitosan film can be used as a good model of a biodegradable scaffold in tissue engineering and cell therapy.

Keywords: Bone Marrow Stromal Cell, Gelatin- Chitosan- Film, Cell Proliferation and Differentiation

This paper should be cited as:

*Corresponding author: Tel: +98 09121987234, Email: m_s_saber@yahoo.com